RESUMO
Atmospheric water harvesting is a practical strategy that is achieved by removing materials from air moisture to relieve global water scarcity. Here we design a water-harvester (i.e., MOF-303/thiolated polymer composite (MTC)) by using a metal-organic framework (MOF-303) and thiolated chitosan (TC) skeleton. Intermolecular hydrogen bonding between TC and MOF-303 facilitates porous structures with enlarged air-polymer interfaces for long cycling life and high capacity at low relative humidity. Benefiting from synergetic effects on porosity and anchorage for accelerating the uptake-release of moisture, MTC exhibits a rapid water uptake capacity of 0.135 g/g in 60 min under 12.5 RH% and ultrafast water desorption kinetics of 0.003 g/g/min at 8.5 RH%, which is superior to the as-reported MOF-303 based adsorbents. At low heat (â¼40 °C), the water desorption and collection rate, respectively, are 0.0195 and 0.0168 g/g/min within 210 min, showing ultrahigh harvesting efficiency. These results highlight the enormous potential as promising materials for solving the world's water scarcity crisis. This study offers an insight into the design of AWH materials, which can be extended into applications in some realms, e.g., freshwater development for industry in arid areas, water engineering-related devices and systems, etc.
RESUMO
Photothermal superhydrophobic surfaces are potential to become ideal anti-/deicing surfaces due to their rapid water removal, icing delay, and photothermal deicing performance. Here, a robust photothermal icephobic surface with mechanical durability is shown that is integrated with a microspine array inspired by honeycomb and cactus thorn (i.e., MAHC), which is developed by a laser-layered microfabrication strategy. The maximum stress on the microspine of the MAHC is reduced by ≈2/3, due to the protection of the bionic honeycomb structure. Even after 200 linear abrasions by a steel blade, the MAHC remains superior water repellency with a water contact angle of 150.7° and roll-off angles of 10.3°, stable icing delay time (578.2 s), and rapidly photothermal deicing capabilities (401 s). As the MAHC is fabricated on a curvature surface such as a copper alloy transmission line for an overhead high-speed rail, a stable photothermal anti-/deicing in a low-temperature environment still can be achieved effectively. The freezing rain covering the functional transmission line completely slides off within 758 s under one sun illumination. This studying offers insight into the design of novel materials with stable anti-icing/icephobic structures, which would be extended into some applied realms, for example, transportation fields or power systems in cold or low-temperature climates.
RESUMO
Photothermal materials have gained considerable attention in the field of anti-/de-icing due to its environmental friendliness and energy saving. However, it is always significantly challenging to obtain solar thermal materials with hierarchical structure and simultaneously demonstrate both the ultra-long icing delay ability and the superior photothermal de-icing ability. Here, a photothermal icephobic MOF-based micro and nanostructure surface (MOF-MNS) is presented, which consists of micron groove structure and fluorinated MOF nanowhiskers. The optimal MOF-M250 NS can achieve solar absorption of over 98% and produce a high temperature increment of 65.5 °C under 1-sun illumination. Such superior photothermal-conversion mechanism of MOF-M250 NS is elucidated in depth. In addition, the MOF-M250 NS generates an ultra-long icing delay time of ≈3960 s at -18 °C without solar illumination, achieving the longest delay time, which isn't reported before. Due to its excellent solar-to-heat conversation ability, accumulated ice and frost on MOF-M250 NS can be rapidly melted within 720 s under 1-sun illumination and it also holds a high de-icing rate of 5.8 kg m-2 h-1 . MOF-M250 NS possesses the versatility of mechanical robustness, chemical stability, and low temperature self-cleaning, which can synergistically reinforce the usage of icephobic surfaces in harsh conditions.
RESUMO
This study was designed to probe into the improvement of rehabilitation training combined with Jiaji electroacupuncture intervention on patients with upper limb peripheral nerve injury. A total of 114 patients with peripheral nerve injury of upper limbs in our hospital from August 2017 to November 2019 were collected as the research participants. Among them, 59 in the control group (CG) received rehabilitation training alone, while 65 in the observation group (OG) received rehabilitation training combined with Jiaji electroacupuncture intervention. The therapeutic efficacy, Barthel index, and Fugl-Meyer assessment score, motor nerve conduction velocity, sensory nerve conduction velocity and amplitude, and quality of life (score SF-36) were compared between the two groups before and after treatment. The total effective rate of the OG was markedly higher than that of the CG. After treatment, the Barthel index, Fugl-Meyer assessment score, motor nerve conduction velocity, and sensory nerve conduction velocity and amplitude of the OG were obviously higher than those of the CG, and the SF-36 scores of the OG were higher than those of the CG in 8 dimensions. Rehabilitation training combined with Jiaji electroacupuncture intervention can dramatically promote the recovery of muscle group function and improve the quality of life of patients with upper limb peripheral nerve injury.
Assuntos
Eletroacupuntura , Traumatismos dos Nervos Periféricos , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Músculos , Traumatismos dos Nervos Periféricos/terapia , Qualidade de Vida , Resultado do Tratamento , Extremidade SuperiorRESUMO
Porous TiAl3 intermetallics were prepared by the thermal explosion (TE) and space holder method with different particle sizes of Ti and Al powders, and their reaction behaviors were investigated. The results showed that with the increase in the particle size of the Ti and Al powders, the interfacial contact between the particles decreased, resulting in low interfacial energy and reaction activity, making the process difficult to initiate. Meanwhile, the heat flow rose from 358.37 J/g to 730.17 J/g and 566.74 J/g due to the extension of the solid-liquid diffusion time. The TiAl3 structures obviously expanded, and the formation of connected pore channels promoted the porosity. Only when the Ti and Al particle sizes were both small did the solid-solid diffusion significantly appear. At the same time, the TE reaction weakened, so the product particles had no time to fully grow. This indicates that the particle size of the raw materials controlled the TE reaction process by changing the solid-liquid diffusion reaction time and the degree of solid-phase diffusion.