Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Opt Lett ; 49(6): 1628-1631, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489468

RESUMO

A single-photon lidar based on multi-repetition-rate pulse train correlation and accumulation is proposed, and a ranging experiment is conducted on a 32 m target. By accumulating the correlation ranging results of pulse trains with internal spacings of 80, 100, and 125 ns, the signal-to-noise ratio of the cross correlation function is improved by about three-fold, which enables our method to improve the ranging precisions by more than 20% compared with the single repetition-rate method, and the shorter the acquisition time, the more obvious the advantage will be. Experimental results show that at an acquisition time of 0.01 s, our method can still achieve a ranging precision of 2.59 cm, while the single repetition-rate method can no longer obtain effective ranging results at this time. This method will be of great significance for realizing high-speed, large-scale unambiguous single-photon lidar ranging.

2.
Chin Med ; 19(1): 25, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360724

RESUMO

Osteoarthritis (OA) is the most prevalent degenerative musculoskeletal disease, severely impacting the function of patients and potentially leading to disability, especially among the elderly population. Natural products (NPs), obtained from components or metabolites of plants, animals, microorganisms etc., have gained significant attention as important conservative treatments for various diseases. Recently, NPs have been well studied in preclinical and clinical researches, showing promising potential in the treatment of OA. In this review, we summed up the main signaling pathways affected by NPs in OA treatment, including NF-κB, MAPKs, PI3K/AKT, SIRT1, and other pathways, which are related to inflammation, anabolism and catabolism, and cell death. In addition, we described the therapeutic effects of NPs in different OA animal models and the current clinical studies in OA patients. At last, we discussed the potential research directions including in-depth analysis of the mechanisms and new application strategies of NPs for the OA treatment, so as to promote the basic research and clinical transformation in the future. We hope that this review may allow us to get a better understanding about the potential bioeffects and mechanisms of NPs in OA therapy, and ultimately improve the effectiveness of NPs-based clinical conservative treatment for OA patients.

3.
Adv Sci (Weinh) ; 11(7): e2306143, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38083984

RESUMO

Macrophages are heterogenic phagocytic cells that play distinct roles in physiological and pathological processes. Targeting different types of macrophages has shown potent therapeutic effects in many diseases. Although many approaches are developed to target anti-inflammatory macrophages, there are few researches on targeting pro-inflammatory macrophages, which is partially attributed to their non-s pecificity phagocytosis of extracellular substances. In this study, a novel recombinant protein is constructed that can be anchored on an exosome membrane with the purpose of targeting pro-inflammatory macrophages via antigen recognition, which is named AnCar-ExoLaIMTS . The data indicate that the phagocytosis efficiencies of pro-inflammatory macrophages for different AnCar-ExoLaIMTS show obvious differences. The AnCar-ExoLaIMTS3 has the best targeting ability for pro-inflammatory macrophages in vitro and in vivo. Mechanically, AnCar-ExoLaIMTS3 can specifically recognize the leucine-rich repeat domain of the TLR4 receptor, and then enter into pro-inflammatory macrophages via the TLR4-mediated receptor endocytosis pathway. Moreover, AnCar-ExoLaIMTS3 can efficiently deliver therapeutic cargo to pro-inflammatory macrophages and inhibit the synovial inflammatory response via downregulation of HIF-1α level, thus ameliorating the severity of arthritis in vivo. Collectively, the work established a novel gene/drug delivery system that can specifically target pro-inflammatory macrophages, which may be beneficial for the treatments of arthritis and other inflammatory diseases.


Assuntos
Artrite , Macrófagos , Humanos , Macrófagos/metabolismo , Artrite/tratamento farmacológico , Fagocitose , Anti-Inflamatórios/uso terapêutico , Comunicação Celular
4.
Opt Express ; 31(23): 39213-39221, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-38018005

RESUMO

We investigated absorption and field enhancements of shallow nanocavities on top of high-aspect-ratio dielectric pillars in the infrared range. The structure includes a high-aspect-ratio nanopillar array of high refractive index, with nano-cavities on top of the pillars, and a metal plane at the bottom. The enhancement factor of electric field intensity reaches 3180 in the nanocavities and peak absorption reaches 99%. We also investigated the finite-size effect of the presented structure to simulate real experiments. Due to its narrow absorption bandwidth 3.5 nm, it can work as a refractive index sensor with sensitivity 297.5 nm/RIU and figure of merit 85. This paves the way to directly control light field at the nanoscales in the infrared light range. The investigated nanostructure will find applications in multifunctional photonics devices such as chips for culturing cells, refractive index sensors, biosensors of single molecule detection and nonlinear sensors.

5.
Cartilage ; : 19476035231205690, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37846064

RESUMO

OBJECTIVE: Extrachromosomal circular DNA (eccDNA) has been shown to be involved in several physiological and pathological processes including immunity, inflammation, aging, and tumor. However, the expression of eccDNA in cartilage has not been reported until now. In this study, we aimed to investigate the landscape of eccDNA in articular cartilage and analyze the potential roles in osteoarthritis (OA). METHODS: The samples of articular cartilage were obtained from total knee arthroplasty (TKA) donors with OA. The mitochondrial DNA (mtDNAs) and the linear DNAs from chondrocytes of articular cartilage were removed. Then the eccDNAs were enriched for cir-DNA sequencing. After quality control evaluation, we systematically revealed the identified eccDNA data including size distribution, the size range, and sequence pattern. Moreover, we explored and discussed the potential roles of eccDNA in OA via motif analysis and Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. RESULTS: The chondrocytes from OA cartilage contained an abundance of eccDNAs, which was termed as OC-eccDNAs (OA cartilage-derived eccDNA). The characteristics of OC-eccDNAs were tissue-specific, including the distribution, the size range, and sequence pattern. Moreover, the functional analysis indicated that eccDNA may be involved in the homeostasis maintenance of chondrocytes and participated in the process of OA. CONCLUSIONS: Our data first showed the landscape of eccDNA in articular cartilage and preliminarily indicated the potential roles of eccDNA in OA.

6.
Materials (Basel) ; 16(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37687608

RESUMO

Dielectric elastomers (DEs) are a class of electro-active polymers (EAPs) that can deform under electric stimuli and have great application potential in bionic robots, biomedical devices, energy harvesters, and many other areas due to their outstanding deformation abilities. It has been found that stretching rate, temperature, and electric field have significant effects on the stress-strain relations of DEs, which may result in the failure of DEs in their applications. Thus, this paper aims to develop a thermo-electro-viscoelastic model for DEs at finite deformation and simulate the highly nonlinear stress-strain relations of DEs under various thermo-electro-mechanical loading conditions. To do so, a thermodynamically consistent continuum theoretical framework is developed for thermo-electro-mechanically coupling problems, and then specific constitutive equations are given to describe the thermo-electro-viscoelastic behaviors of DEs. Furthermore, the present model is fitted with the experimental data of VHB4905 to determine a temperature-dependent function of the equilibrium modulus. A comparison of the nonlinear loading-unloading curves between the model prediction and the experimental data of VHB4905 at various thermo-electro-mechanical loading conditions verifies the present model and shows its ability to simulate the thermo-electro-viscoelastic behaviors of DEs. Simultaneously, the results reveal the softening phenomena and the instant pre-stretch induced by temperature and the electric field, respectively. This work is conducive to analyzing the failure of DEs in functionalities and structures from theoretical aspects at various thermo-electro-mechanical conditions.

7.
Appl Opt ; 62(22): 5910-5916, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37706942

RESUMO

The single-photon avalanche diode (SPAD) array with time-to-digital converter (TDC) circuits on each pixel is an excellent candidate detector for imaging LIDAR systems. However, the low fill-factor of the SPAD array does not allow for efficient use of laser energy when directly adopted in a LIDAR system. Here, we design a reconfigurable coaxial single-photon LIDAR based on the SPAD array and diffractive optical elements (DOEs). We use the DOE and beam expander to shape the laser beam into a laser dot matrix. The total divergence angle of the DOE spot beam is strictly matched to the total field of view (FOV) angle of the SPAD array. Meanwhile, each focused beamlet is individually matched to every active area of the SPAD array detector, which increases the use of output energy about 100 times compared to the diffusion illumination system. Besides, the system uses the active area as the minimum pixel and can support sub-pixel scanning, resulting in higher resolution images. Through this coaxial structure, two different telescope systems after transceiver switching can be reconfigured for imaging targets at different distances. Based on our single-photon LIDAR system, we achieved 3D imaging of targets at 100 m and 180 m using two different telescope configurations.

8.
Opt Express ; 31(14): 22372-22384, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37475349

RESUMO

Based on Dammann vortex grating and adaptive gain stochastic parallel gradient descent algorithm, we theoretically proposed a phase control technology scheme of the coherent beam combining system for generating perfect vectorial vortex beams (VVBs). The simulated results demonstrate that the discrete phase locking for different types of VVBs (including vortex beams, vector beams, and generalized VVBs) can be successfully realized. The intensity distributions, polarization orientation, Pancharatnam phases, and beam widths of different |Hm,n〉 states with the obtained discrete phase distribution further prove that the generated beams are perfect VVBs. Subsequently, the phase aberration residual for different VVBs is evaluated using the normalized phase cosine distance function, and their values range from 0.01 to 0.08, which indicates the obtained discrete phase distribution is close to the ideal phase distribution. In addition, benefitting from the high bandwidth of involved devices in the proposed scheme, the influence of dynamic phase noise can be negligible. The proposed method could be beneficial to realize and switch flexible perfect VVBs in further applications.

9.
BMC Bioinformatics ; 24(1): 226, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264324

RESUMO

BACKGROUND: Comutation plot is a widely used visualization method to deliver a global view of the mutation landscape of large-scale genomic studies. Current tools for creating comutation plot are either offline packages that require coding or online web servers with varied features. When a package is used, it often requires repetitive runs of code to adjust a single feature that might only be a few clicks in a web app. But web apps mostly have limited capacity for customization and cannot handle very large genomic files. RESULTS: To improve on existing tools, we identified features that are most frequently adjusted in creating a plot and incorporate them in Comut-viz that interactively filters and visualizes mutation data as downloadable plots. It includes colored labels for numeric metadata, a preloaded palette for changing colors and two input boxes for adjusting width and height. It accepts standard mutation annotation format (MAF) files as input and can handle large MAF files with more than 200 k rows. As a front-end only app, Comut-viz guarantees privacy of user data and no latency in the analysis. CONCLUSIONS: Comut-viz is a highly responsive and extensible web app to make comutation plots. It provides customization for frequently adjusted features and accepts large genomic files as input. It is suitable for genomic studies with more than a thousand samples.


Assuntos
Genoma , Genômica , Genômica/métodos , Mutação , Software
10.
Front Oncol ; 13: 1078076, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37139148

RESUMO

Patients with metastatic pancreatic cancer have limited treatment options and a dismal prognosis. While RET fusion is rare (0.6%) in pancreatic cancer, the efficacy of RET-targeted treatment in patients with TRIM33-RET fusion has not been previously reported. Herein, we presented a case of a 68-year-old man with pancreatic cancer harboring TRIM33-RET fusion who responded remarkably to pralsetinib despite being intolerant to chemotherapy. To our knowledge, this is the first report on the clinical value of a single TRIM33-RET fusion in pancreatic cancer, which may benefit from the targeted therapy.

11.
Opt Express ; 31(7): 11885-11898, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37155813

RESUMO

Based on coherent beam combining, we propose a method for generating the perfect vectorial vortex beams (VVBs) with a specially designed radial phase-locked Gaussian laser array, which is composed of two discrete vortex arrays with right-handed (RH) and left-handed (LH) circularly polarized states and in turn adjacent to each other. The simulation results demonstrate that the VVBs with correct polarization order and topological Pancharatnam charge are successfully generated. The diameter and thickness of generated VVBs independent of the polarization orders and topological Pancharatnam charges further prove that the generated VVBs are perfect. Propagating in free space, the generated perfect VVBs can be stable for a certain distance, even with half-integer orbital angular momentum. In addition, constant phases φ0 between the RH and LH circularly polarized laser arrays has no effect on polarization order and topological Pancharatnam charge but makes polarization orientation to rotate φ0/2. Moreover, perfect VVBs with elliptically polarized states can be flexibly generated only by adjusting the intensity ratio between the RH and LH circularly polarized laser array, and such perfect VVBs are also stable on beam propagation. The proposed method could provide a valuable guidance for high power perfect VVBs in future applications.

13.
Burns Trauma ; 11: tkac060, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36733467

RESUMO

Autophagy, as a fundamental mechanism for cellular homeostasis, is generally involved in the occurrence and progression of various diseases. Osteoarthritis (OA) is the most common musculoskeletal disease that often leads to pain, disability and economic loss in patients. Post-traumatic OA (PTOA) is a subtype of OA, accounting for >12% of the overall burden of OA. PTOA is often caused by joint injuries including anterior cruciate ligament rupture, meniscus tear and intra-articular fracture. Although a variety of methods have been developed to treat acute joint injury, the current measures have limited success in effectively reducing the incidence and delaying the progression of PTOA. Therefore, the pathogenesis and intervention strategy of PTOA need further study. In the past decade, the roles and mechanisms of autophagy in PTOA have aroused great interest in the field. It was revealed that autophagy could maintain the homeostasis of chondrocytes, reduce joint inflammatory level, prevent chondrocyte death and matrix degradation, which accordingly improved joint symptoms and delayed the progression of PTOA. Moreover, many strategies that target PTOA have been revealed to promote autophagy. In this review,  we summarize the roles and mechanisms of autophagy in PTOA and the current strategies for PTOA treatment that depend on autophagy regulation, which may be beneficial for PTOA patients in the future.

14.
Opt Express ; 30(19): 33994-34011, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36242422

RESUMO

Currently single-photon avalanche diode (SPAD) arrays suffer from a small-scale pixel count, which makes it difficult to achieve high-resolution 3D imaging directly through themselves. We established a CCD camera-assisted SPAD array depth imaging system. Based on illumination laser lattice generated by a diffractive optical element (DOE), the registration of the low-resolution depth image gathered by SPAD and the high-resolution intensity image gathered by CCD is realized. The intensity information is used to guide the reconstruction of a resolution-enhanced depth image through a proposed method consisting of total generalized variation (TGV) regularization and temporal-spatial (T-S) filtering algorithm. Experimental results show that an increasement of 4 × 4 times for native depth image resolution is achieved and the depth imaging quality is also improved by applying the proposed method.

15.
Nat Commun ; 13(1): 3784, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35778401

RESUMO

Developing highly active and durable electrocatalysts for acidic oxygen evolution reaction remains a great challenge due to the sluggish kinetics of the four-electron transfer reaction and severe catalyst dissolution. Here we report an electrochemical lithium intercalation method to improve both the activity and stability of RuO2 for acidic oxygen evolution reaction. The lithium intercalates into the lattice interstices of RuO2, donates electrons and distorts the local structure. Therefore, the Ru valence state is lowered with formation of stable Li-O-Ru local structure, and the Ru-O covalency is weakened, which suppresses the dissolution of Ru, resulting in greatly enhanced durability. Meanwhile, the inherent lattice strain results in the surface structural distortion of LixRuO2 and activates the dangling O atom near the Ru active site as a proton acceptor, which stabilizes the OOH* and dramatically enhances the activity. This work provides an effective strategy to develop highly efficient catalyst towards water splitting.

16.
Front Surg ; 9: 891869, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35620198

RESUMO

Background: Patellar fracture is a common phenomenon observed in orthopedic clinics. Many methods have been shown to be effective in the fixation of patellar fracture. However, there are few studies on the antirotation effect of these methods. The purpose of this study is to present a new strategy of K-wire tension band therapy for patellar fracture and explore the antirotation effect of the modified tension band method on patellar fracture. Methods: A retrospective clinical observation study was conducted on 75 patients with patellar fracture. Totally, 46 patients were enrolled to the traditional group, who received the traditional K-wire tension band therapy. The modified group included 29 patients on whom our new strategy was implemented. The operation time, intraoperative blood loss, and fracture healing time were collected to compare the two operations and the knee society score (KSS) scores after the operations, and complications were recorded and retrieved to indicate the effectiveness of the two treatments. Results: The preoperative baseline data (gender, age, fracture types) of the two groups showed no significant statistical difference. Similarly, there was no significant difference in the operation time, intraoperative blood loss, and fracture healing time between the two groups. The KSS clinical scores 1 year after operation was 90 (84, 95) for the traditional group as compared with 99 (97, 100) for the modified group (p < 0.05). The KSS functional scores 1 year after operation in the two groups were 90 (65, 90) and 100 (90, 100) (p < 0.05). The incidences of complications due to the rotation of K-wires in the traditional group and the modified group were 76.1% (35 of 46) and 6.9% (2 of 29) with a significant statistical difference (p < 0.05). Conclusion: This study shows that our modified tension band therapy is an effective strategy for antirotation in the treatment of patellar fracture and proves that it can achieve better clinical outcomes than the traditional K-wire tension band method. This new strategy may be a safe and effective clinical technique for the treatment of patellar fracture. However, more prospective randomized controlled trials with larger sample sizes are still needed to further prove its efficacy.

17.
18.
Open Med (Wars) ; 17(1): 427-440, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35340619

RESUMO

We aimed to screen the drug metabolism-related subgroups of pancreatic adenocarcinoma (PAAD) and to study the prognosis, clinical features, immune infiltration, and gene mutation differences of different subtypes in PAAD patients. All 181 cases of PAAD samples and clinical characteristics data were downloaded from The Cancer Genome Atlas (TCGA). After matching the drug metabolism-related genes downloaded from PMID 33202946 with the TCGA dataset, the drug metabolism-related genes were initially obtained. Besides, univariate Cox regression analysis was used to screen the drug metabolism genes related to the prognosis of PAAD. Moreover, the construction of the protein-protein interaction (PPI) network and gene ontology were performed. The four subgroups of PAAD obtained from unsupervised clustering analysis were systematically analyzed, including prognostic, GSVA, immune infiltration, and gene mutation analysis. A total of 83 drug metabolism genes related to the prognosis of PAAD were obtained and enriched in 16 pathways. The PPI network was composed of 248 relationship pairs. Four subgroups that can identify different subtypes of PPAD were obtained, and there were significant differences in survival and clinical characteristics, mutation types, and immune infiltration abundance between subgroups. A total of 17 different pathways among the four subgroups involved in cell cycle, response to stimulants such as drugs, and transmembrane transport. In this study, the four subgroups related to the drug metabolism of PAAD were comprehensively analyzed, and the important role of drug metabolism-related genes in the immune infiltration and prognosis of PAAD were emphasized.

19.
Front Surg ; 8: 756614, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34778363

RESUMO

Background: Intertrochanteric femur fractures, which are common geriatric osteoporotic fractures, have imposed a huge economic and social burden. This study clarified the global status of research on intertrochanteric fractures between 2001 and 2020 and predicted future research trends in this field using bibliometric and visualized studies. Methods: Publications related to intertrochanteric fractures were retrieved from the Web of Science (WoS) database. All studies were published between 2001 and 2020. Bibliometric and co-occurrence analyses were conducted using VoS viewer software. Results: In total, 2,632 studies were retrieved. The number of global publications regarding intertrochanteric fractures increased annually. The United States was the largest contributor, ranking first in total publications, citations, and the H-index. Switzerland had the highest average citation frequency among the 10 countries with the highest number of publications. The journal that published the most articles regarding intertrochanteric fractures was the Injury International Journal of The Care of The Injured, with 290 articles published. This journal also ranked first in the citation frequency. MJ Parker, an author, published the most papers in the field, and the University of California research team at San Francisco contributed the most publications in this field. During the co-occurrence analysis, all keywords were divided into four clusters: internal fixation study, complication study, risk-factor study, and survival and prognosis analysis study. The internal fixation and survival and prognosis analysis studies were predicted as the next hot topics in the field of intertrochanteric fractures. Conclusions: Intertrochanteric fractures are gaining increasing research attention according to the current global trend, and the number of publications regarding intertrochanteric hip fractures will continue to increase. The United States currently publishes the most articles on intertrochanteric fractures. The number of studies related to internal fixation, survival, and prognosis analysis is increasing, suggesting that these topics may become the next research hotspots in the area of intertrochanteric fractures.

20.
Research (Wash D C) ; 2021: 9842391, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34806020

RESUMO

Electrochemical lithiation/delithiation of electrodes induces chemical strain cycling that causes fatigue and other harmful influences on lithium-ion batteries. In this work, a homemade in situ measurement device was used to characterize simultaneously chemical strain and nominal state of charge, especially residual chemical strain and residual nominal state of charge, in graphite-based electrodes at various temperatures. The measurements indicate that raising the testing temperature from 20°C to 60°C decreases the chemical strain at the same nominal state of charge during cycling, while residual chemical strain and residual nominal state of charge increase with the increase of temperature. Furthermore, a novel electrochemical-mechanical model is developed to evaluate quantitatively the chemical strain caused by a solid electrolyte interface (SEI) and the partial molar volume of Li in the SEI at different temperatures. The present study will definitely stimulate future investigations on the electro-chemo-mechanics coupling behaviors in lithium-ion batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA