RESUMO
Construction of quasi-solid-state lithium metal batteries (LMBs) by in situ polymerization is considered a key strategy for the next generation of energy storage systems with high specific energy and safety. Poly(1,3-dioxolane) (PDOL)-based electrolytes have attracted wide attention among researchers, benefiting from the low cost and high ionic conductivity. However, interfacial deterioration and uncontrollable growth of lithium dendrites easily appeared in LMBs due to the high reactivity of lithium metal, resulting in the failure of LMBs. In this work, a strategy is developed of using Ga(OTF)3 as the initiator to obtain a PDOL-based gel electrolyte (GaPD). In addition, a hybrid stable solid electrolyte interphase (SEI) of lithium fluoride/Li2O/Li-Ga alloys is observed on the surface of lithium metal. Combined with density functional theory calculations, the hybrid SEI shows high affinity toward Li+, indicating that a uniform deposition of Li+ could be achieved. Therefore, the Li/GaPD/Li cell operates stably for 1600 h at room temperature. In addition, the LiFePO4/GaPD/Li cell retains a capacity retention rate of 90.2% over 200 cycles at 1 C. This work provides a reference for the practical application of in situ polymerization technology in high-performance and safe LMBs.
RESUMO
Long hair trait represents a valuable genetic asset in Qinghai Tibetan sheep, with its quality and yield being contingent upon the characteristics of hair follicles (HFs). This study aims to elucidate the genetic mechanism underlying primary hair follicles (PFs) formation through an integrated analysis of proteomics and transcriptomics. Samples were collected at key stages of fetal HF formation (E65 and E85) for histological observation, revealing significant alterations in the microstructure of PF (E65) during the developmental process. In this study, a comprehensive analysis revealed a total of 217 overlapping genes that exhibited concordant expression patterns at both the proteomic and transcriptomic levels. Furthermore, to ensure the reliability of our findings, we employed parallel response monitoring (PRM) to validate the obtained proteomic data. The protein-protein interaction (PPI) network diagram highlights five hub core proteins (TTN, IGTA2, F2, EGFR, and MYH14). These differentially expressed proteins (DEPs) play crucial roles in metabolic processes, cell adhesion, and diverse biological processes. The potential synergy between transcriptional regulation and post-translational modifications plays a pivotal role in governing the initiation PF development. The findings presented in this study offer innovative insights into the molecular mechanisms underlying HFs generation and establish a robust foundation for targeted breeding strategies aimed at augmenting wool traits in sheep. SIGNIFICANCE: The composition of coarse hair primarily consists of long, myelinated fibers originating from primary hair follicles. Sheep fetal skin initiates the formation of primary hair follicles around E65, followed by the development of secondary hair follicles around E85. Conducting differential proteomic and transcriptomic analyses during these developmental stages enhances our understanding of the molecular mechanisms underlying primary hair follicle development and offers valuable insights for sustainable utilization of high-quality germplasm resources.
RESUMO
Flexible batteries with large energy densities, lightweight nature, and high mechanical strength are considered as an eager goal for portable electronics. Herein, we first propose free-standing graphene fiber electrodes containing roller-like orientated spore carbon spheres via rheological engineering. With the help of the orientated microfluidic cospinning technology and the plasma reduction method, spore carbon spheres are self-assembled and orientedly dispersed into numerous graphene flakes, forming graphene fiber electrodes enriched with internal rolling woven structures, which cannot only enhance the electrical contact between active materials but also effectively improve the mechanical strength and structure stability of graphene fiber electrodes. When the designed graphene fibers are combined with the active sulfur cathode and lithium metal anode, the assembled flexible lithium sulfur batteries possess superior electrochemical performance with high capacity (>1000 mA h g-1) and excellent cycling life as well as good mechanical properties. According to density functional theory and COMSOL simulations, the roller-like spore carbon sphere-orientated graphene fiber hosts provide reinforced trapping-catalytic-conversion behavior to soluble polysulfides and nucleation active sites to lithium metal, thus synergistically suppressing the shuttle effect of polysulfides at the cathode side and lithium dendrite growth at the anode side, thereby boosting the whole electrochemical properties of lithium sulfur batteries.
RESUMO
BACKGROUND: Elucidating the genetic variation underlying phenotypic diversity will facilitate improving production performance in livestock species. The Tibetan sheep breed in China holds significant historical importance, serving as a fundamental pillar of Qinghai's animal husbandry sector. The Plateau-type Tibetan sheep, comprising 90% of the province's population, are characterized by their tall stature and serve as the primary breed among Tibetan sheep. In contrast, Zhashijia sheep exhibit larger size and superior meat quality. These two species provide an excellent model for elucidating the genetic basis of body size variation. Therefore, this study aims to conduct a comprehensive genome-wide association study on these two Tibetan sheep breeds to identify single nucleotide polymorphism loci and regulatory genes that influence body size traits in Tibetan sheep. RESULT: In this study, the phenotypic traits of body weight, body length, body height, chest circumference, chest depth, chest width, waist angle width, and pipe circumference were evaluated in two Tibetan sheep breeds: Plateau-type sheep and Zhashijia Tibetan sheep. Whole genome sequencing generated 48,215,130 high-quality SNPs for genome-wide association study. Four methods were applied and identified 623 SNPs significantly associated with body size traits. The significantly associated single nucleotide polymorphisms identified in this study are located near or within 111 candidate genes. These genes exhibit enrichment in the cAMP and Rap1 signaling pathways, significantly affecting animal growth, and body size. Specifically, the following genes were associated: ASAP1, CDK6, FRYL, NAV2, PTPRM, GPC6, PTPRG, KANK1, NTRK2 and ADCY8. CONCLUSION: By genome-wide association study, we identified 16 SNPs and 10 candidate genes associated with body size traits in Tibetan sheep, which hold potential for application in genomic selection breeding programs in sheep. Identifying these candidate genes will establish a solid foundation for applying molecular marker-assisted selection in sheep breeding and improve our understanding of body size control in farmed animals.
Assuntos
Tamanho Corporal , Estudo de Associação Genômica Ampla , Fenótipo , Polimorfismo de Nucleotídeo Único , Animais , Tamanho Corporal/genética , Ovinos/genética , Ovinos/anatomia & histologia , Tibet , Locos de Características QuantitativasRESUMO
Selenium (Se) serves as a burgeoning high-energy-density cathode material in lithium-ion batteries. However, the development of Se cathode is strictly limited by low Se utilization and inferior cycling stability arising from intrinsic volume expansion and notorious shuttle effect. Herein, a microbial metabolism strategy is developed to prepare "functional vesicle-like" Se globules via Bacillus subtilis subsp. from selenite in sewage, in which Se nanoparticles are armed with a natural biological protein membrane with rich nitrogen and phosphorus, achieving the eco-efficient conversion of trash into treasure (selenite, SeO3 2- â Selenium, Se). The appealing-design "functional vesicle-like" Se globules are beneficial to accommodate volume changes of Se in electrochemical reactions, confining polyselenides via chemisorption, and enhancing mechanical strength of electrode by associated bacteria debris, realizing comprehensive utilization of microorganism. By conceptualizing "functional vesicle-like" Se globules, rather than artificial Se-host composites, as cathode for lithium-selenium batteries, it exhibits outstanding cycling stability and improved rate performance. This strategy opens the door to design smart electrode materials with unattainable structure that cannot be achieved by traditional approaches, achieving eco-efficient conversion of pollutants into energy-storage nanomaterials, which will be a promising research field for interdisciplinary of energy, biology, and environment.
Assuntos
Fontes de Energia Elétrica , Lítio , Selênio , Lítio/química , Selênio/química , Bacillus subtilis , Eletrodos , Nanopartículas/químicaRESUMO
High-performance lithium metal anodes are crucial for the development of advanced Li metal batteries. Herein, this work reports a novel plasma coupled electrolyte additive strategy to prepare high-quality composite solid electrolyte interphase (SEI) on Li metal to achieve enhanced performance and stability. With the guidance of calculations, this work selects diethyl dibromomalonate (DB) as an additive to optimize the solvation structure of electrolytes to modify the SEI. Meanwhile, this work groundbreakingly develops DB plasma technology coupled with DB electrolyte additive to construct a combinatorial SEI: inner plasma-induced SEI layer composed of LiBr and Li2CO3 plus additive-reduced SEI containing LiBr/Li2CO3/organic lithium compounds as an outer compatible layer. The optimized hybrid SEI has strong affinity toward Li+ and good mechanical properties, thereby inducing horizontal dispersion and uniform deposition of Li+ and keep structure stable. Accordingly, the symmetrical cells exhibit enhanced cycling stability for 1200 h at an overpotential of 23.8 mV with average coulombic efficiency (99.51%). Additionally, the full cells with LiNi0.8Co0.1Mn0.1O2 cathode deliver a capacity retention of 81.7% after 300 cycles at 0.5 C, and the pouch cell achieves a volumetric specific energy of ≈664 Wh Lâ1. This work provides new enlightenment on plasma technology for fabrication of advanced metal anodes for energy storage.
RESUMO
Lithium-sulfur (Li-S) batteries are expected to be the next-generation energy storage system due to the ultrahigh theoretical energy density and low cost. However, the notorious shuttle effect of higher-order polysulfides and the uncontrollable lithium dendrite growth are the two biggest challenges for commercially viable Li-S batteries. Herein, these two main challenges are solved by in situ polymerization of bi-functional gel polymer electrolyte (GPE). The initiator (SiCl4) not only drives the polymerization of 1,3-dioxolane (DOL) but also induces the construction of a hybrid solid electrolyte interphase (SEI) with inorganic-rich compositions on the Li anode. In addition, diatomaceous earth (DE) is added and anchored in the GPE to obtain PDOL-SiCl4-DE electrolyte through in situ polymerization. Combined with density functional theory (DFT) calculations, the hybrid SEI provides abundant adsorption sites for the deposition of Li+, inhibiting the growth of lithium dendrites. Meanwhile, the shuttle effect is greatly alleviated due to the strong adsorption capacity of DE toward lithium polysulfides. Therefore, the Li/Li symmetric cell and Li-S full cell assembled with PDOL-SiCl4-DE exhibit excellent cycling stability. This study offers a valuable reference for the development of high performance and safe Li-S batteries.
RESUMO
Unfavorable parasitic reactions between the Ni-rich layered oxide cathode and the sulfide solid electrolyte have plagued the realization of all-solid-state rechargeable Li batteries. The accumulation of inactive by-products (P2Sx, S, POx n- and SOx n-) at the cathode-sulfide interface impedes fast Li-ion transfer, which accounts for sluggish reaction kinetics and significant loss of cathode capacity. Herein, we proposed an easily scalable approach to stabilize the cathode electrochemistry via coating the cathode particles by a uniform, Li+-conductive plastic-crystal electrolyte nanolayer on their surface. The electrolyte, which simply consists of succinonitrile and Li bis(trifluoromethanesulphonyl)imide, serves as an interfacial buffer to effectively suppress the adverse phase transition in highly delithiated cathode materials, and the loss of lattice oxygen and generation of inactive oxygenated by-products at the cathode-sulfide interface. Consequently, an all-solid-state rechargeable Li battery with the modified cathode delivers high specific capacities of 168â mAh g-1 at 0.1â C and a high capacity retention >80 % after 100 cycles. Our work sheds new light on rational design of electrode-electrolyte interface for the next-generation high-energy batteries.
RESUMO
Sulfide-based all-solid-state lithium batteries (ASSLBs) have attracted unprecedented attention in the past decade due to their excellent safety performance and high energy storage density. However, the sulfide solid-state electrolytes (SSEs) as the core component of ASSLBs have a certain stiffness, which inevitably leads to the formation of pores and cracks during the production process. In addition, although sulfide SSEs have high ionic conductivity, the electrolytes are unstable to lithium metal and have non-negligible electronic conductivity, which severely limits their practical applications. Herein, a grain boundary electronic insulation strategy through in situ polymer encapsulation is proposed for this purpose. A polymer layer with insulating properties is applied to the surface of the Li5.5PS4.5Cl1.5 (LPSC) electrolyte particles by simple ball milling. In this way, we can not only achieve a dense electrolyte pellet but also improve the stability of the Li metal anode and reduce the electronic conductivity of LPSC. This strategy of electronic isolation of the grain boundaries enables stable deposition/stripping of the modified electrolyte for more than 2000 h at a current density of 0.5 mA cm-1 in a symmetrical Li/Li cell. With this strategy, a full cell with Li(Ni0.8Co0.1Mn0.1)O2 (NCM811) as the cathode shows high performance including high specific capacity, improved high-rate capability, and long-term stability. Therefore, this study presents a new strategy to achieve high-performance sulfide SSEs.
RESUMO
The design and fabrication of a lithiophilic skeleton are highly important for constructing advanced Li metal anodes. In this work, a new lithiophilic skeleton is reported by planting metal sulfides (e.g., Ni3S2) on vertical graphene (VG) via a facile ultrafast Joule heating (UJH) method, which facilitates the homogeneous distribution of lithiophilic sites on carbon cloth (CC) supported VG substrate with firm bonding. Ni3S2 nanoparticles are homogeneously anchored on the optimized skeleton as CC/VG@Ni3S2, which ensures high conductivity and uniform deposition of Li metal with non-dendrites. By means of systematic electrochemical characterizations, the symmetric cells coupled with CC/VG@Ni3S2 deliver a steady long-term cycle within 14 mV overpotential for 1800 h (900 cycles) at 1 mA cm-2 and 1 mAh cm-2. Meanwhile, the designed CC/VG@Ni3S2-Li||LFP full cell shows notable electrochemical performance with a capacity retention of 92.44% at 0.5 C after 500 cycles and exceptional rate performance. This novel synthesis strategy for metal sulfides on hierarchical carbon-based materials sheds new light on the development of high-performance lithium metal batteries (LMBs).
RESUMO
Uneven lithium (Li) metal deposition typically results in uncontrollable dendrite growth, which renders an unsatisfactory cycling stability and coulombic efficiency (CE) of Li metal batteries (LMBs), preventing their practical application. Herein, a novel carbon cloth with the modification of ZnO nanosheets (ZnO@CC) is fabricated for LMBs. The as-prepared ZnO@CC with a cross-linked network significantly reduces the local current density, and the design of ZnO nanosheets can promote the uniform deposition of Li metal as lithiophilic sites. As a result, the Li metal anodes (LMAs) based on ZnO@CC (ZnO@CC@Li) enables a long cycle life over 640â hours with a low overpotential of 65â mV at a current density of 4â mA cm-2 with a capacity of 1â mAh cm-2 in the symmetric cell. Moreover, when coupling the ZnO@CC@Li with a LiFePO4 cathode, the assembled full cell exhibits excellent long cycle and rate performance, highlighting its promising practical application prospect.
RESUMO
All-solid-state lithium batteries (ASSLBs) are attracting tremendous attention due to their improved safety and higher energy density. However, the use of a metallic lithium anode poses a major challenge due to its low stability and processability. Instead, the graphite anode exhibits high reversibility for the insertion/deinsertion of lithium ions, giving ASSLBs excellent cyclic stability but a lower energy density. To increase the energy density of ASSLBs with the graphite anode, it is necessary to lower the negative/positive (N/P) capacity ratio and to increase the charging voltage. These strategies bring new challenges to lithium metal plating and dendrite growth. Here, a nano-Ag-modified graphite composite electrode (Ag@Gr) is developed to overcome these shortcomings for Li5.5PS4.5Cl1.5-based ASSLBs. The Ag@Gr composite exhibits a strong ability to inhibit lithium metal plating and fast lithium-ion transport kinetics. Ag nanoparticles can accommodate excess Li, and the as-obtained Li-Ag alloy enhances the kinetics of the composite electrode. The ASSLB with the Li(Ni0.8Co0.1Mn0.1)O2 cathode and Ag@Gr anode achieves an energy density of 349 W h kg-1. The full cell using Ag@Gr with an N/P ratio of 0.6 also highlights the rate performance. This work provides a simple and effective method to regulate the charge transport kinetics of graphite anodes and improve the cyclic performance and energy density of ASSLBs.
RESUMO
All-solid-state lithium-sulfur batteries (ASSLSBs) have attracted wide attention due to their ultrahigh theoretical energy density and the ability of completely avoiding the shuttle effect. However, the further development of ASSLSBs is limited by the poor kinetic properties of the solid electrode interface. It remains a great challenge to achieve good kinetic properties, by common strategies to substitute sulfur-transition metal and organosulfur composites for sulfur without reducing the specific capacity of ASSLSBs. In this study, a sulfur-(Ketjen Black)-(bistrifluoromethanesulfonimide lithium salt) (S-KB-LiTFSI) composite is constructed by introducing LiTFSI into the S-KB composite. The initial discharge capacity reaches up to 1483 mA h g-1, benefited from the improved ionic conductivity and diffusion kinetics of the S-KB-LiTFSI composite, where numerous LiF interphases with a Li3N component are in situ formed during cycling. Combined with DFT calculations, it is found that the migration barriers of LiF and Li3N are much smaller than that of the Li6PS5Cl solid electrolyte. The fast ionic conductors of LiF and Li3N not only enhance the Li+ transfer efficiency but also improve the interfacial stability. Therefore, the assembled ASSLSBs operate stably for 600 cycles at 200 mA g-1, and this study provides an effective strategy for the further development of ASSLSBs.
RESUMO
OBJECTIVE: Little is known about the efficacy and safety of exercise training on juvenile idiopathic arthritis (JIA). This study aims to investigate the effect of exercise on health, quality of life, and different exercise capacities in individuals with JIA. METHOD: A comprehensive search of Medline, Embase, Web of Science, and the Cochrane Library was conducted from database inception to October, 2023. Included studies were randomized controlled trials (RCTs) reporting the effects of exercise on JIA patients. Two independent reviewers assessed the literature quality using the Cochrane Collaboration's risk of bias tool. Standardized mean differences (SMD) were combined using random or fixed effects models. The level of evidence was assessed using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach. RESULT: Five RCTs met the inclusion criteria, containing 216 female participants and 90 males. The meta-analysis results showed that exercise had no significant effect on JIA patients based on the Child Health Assessment Questionnaire (CHAQ) (SMD=-0.32, 95%CI: -0.83, 0.19; I2 = 73.2%, P = 0.011) and Quality of Life (QoL) (SMD = 0.27, 95%CI: -0.04, 0.58; I2 = 29.4%, P = 0.243) and no significant effect on peak oxygen uptake (VO2peak). However, exercise significantly reduced visual analog scale (VAS) pain scores in JIA patients (SMD = 0.50, 95%CI: -0.90, -0.10; I2 = 50.2%, P = 0.134). The quality of evidence assessed by GRADE was moderate to very low. CONCLUSION: Exercise does not significantly affect the quality of life and exercise capacity in JIA patients but may relieve pain. More RCTs are needed in the future to explore the effects of exercise on JIA.
Assuntos
Artrite Juvenil , Criança , Feminino , Masculino , Humanos , Artrite Juvenil/terapia , Tolerância ao Exercício , Ensaios Clínicos Controlados Aleatórios como Assunto , Qualidade de Vida , Exercício Físico , DorRESUMO
The construction of high-quality carbon-based energy materials through biotechnology has always been an eager goal of the scientific community. Herein, juice vesicles bioreactors (JVBs) bio-technology based on hesperidium (e.g., pomelo, waxberry, oranges) is first reported for preparation of carbon-based composites with controllable components, adjustable morphologies, and sizes. JVBs serve as miniature reaction vessels that enable sophisticated confined chemical reactions to take place, ultimately resulting in the formations of complex carbon composites. The newly developed approach is highly versatile and can be compatible with a wide range of materials including metals, alloys, and metal compounds. The growth and self-assembly mechanisms of carbon composites via JVBs are explained. For illustration, NiCo alloy nanoparticles are successfully in situ implanted into pomelo vesicles crosslinked carbon (PCC) by JVBs, and their applications as sulfur/carbon cathodes for lithium-sulfur batteries are explored. The well-designed PCC/NiCo-S electrode exhibits superior high-rate properties and enhanced long-term stability. Synergistic reinforcement mechanisms on transportation of ions/electrons of interface reactions and catalytic conversion of lithium polysulfides arising from metal alloy and carbon architecture are proposed with the aid of DFT calculations. The research provides a novel biosynthetic route to rational design and fabrication of carbon composites for advanced energy storage.
RESUMO
"Carbon Peak and Carbon Neutrality" is an important strategic goal for the sustainable development of human society. Typically, a key means to achieve these goals is through electrochemical energy storage technologies and materials. In this context, the rational synthesis and modification of battery materials through new technologies play critical roles. Plasma technology, based on the principles of free radical chemistry, is considered a promising alternative for the construction of advanced battery materials due to its inherent advantages such as superior versatility, high reactivity, excellent conformal properties, low consumption and environmental friendliness. In this perspective paper, we discuss the working principle of plasma and its applied research on battery materials based on plasma conversion, deposition, etching, doping, etc. Furthermore, the new application directions of multiphase plasma associated with solid, liquid and gas sources are proposed and their application examples for batteries (e. g. lithium-ion batteries, lithium-sulfur batteries, zinc-air batteries) are given. Finally, the current challenges and future development trends of plasma technology are briefly summarized to provide guidance for the next generation of energy technologies.
RESUMO
The design and fabrication of novel carbon hosts with high conductivity, accelerated electrochemical catalytic activities, and superior physical/chemical confinement on sulfur and its reaction intermediates polysulfides are essential for the construction of high-performance C/S cathodes for lithium-sulfur batteries (LSBs). In this work, a novel biofermentation coupled gel composite assembly technology is developed to prepare cross-linked carbon composite hosts consisting of conductive Rhizopus hyphae carbon fiber (RHCF) skeleton and lamellar sodium alginate carbon (SAC) uniformly implanted with polarized nanoparticles (V2O3, Ag, Co, etc.) with diameters of several nanometers. Impressively, the RHCF/SAC/V2O3 composites exhibit enhanced physical/chemical adsorption of polysulfides due to the synergistic effect between hierarchical pore structures, heteroatoms (N, P) doping, and polar V2O3 generation. Additionally, the catalytic conversion kinetics of cathodes are effectively improved by regulating the 3D carbon structure and optimizing the V2O3 catalyst. Consequently, the LSBs assembled with RHCF/SAC/V2O3-S cathode show exceptional cycle stability (capacity retention rate of 94.0% after 200 cycles at 0.1 C) and excellent rate performance (specific capacity of 578 mA h g-1 at 5 C). This work opens a new door for the fabrication of hyphae carbon composites via fermentation for electrochemical energy storage.
RESUMO
The artificial synapse array with an electrolyte-gated transistor (EGT) as an array unit presents considerable potential for neuromorphic computation. However, the integration of EGTs faces the drawback of the conflict between the polymer electrolytes and photo-lithography. This study presents a scheme based on a lateral-gate structure to realize high-density integration of EGTs and proposes the integration of 100 × 100 EGTs into a 2.5 × 2.5 cm2 glass, with a unit density of up to 1600 devices cm-2 . Furthermore, an electrolyte framework is developed to enhance the array performance, with ionic conductivity of up to 2.87 × 10-3 S cm-1 owing to the porosity of zeolitic imidazolate frameworks-67. The artificial synapse array realizes image processing functions, and exhibits high performance and homogeneity. The handwriting recognition accuracy of a representative device reaches 92.80%, with the standard deviation of all the devices being limited to 9.69%. The integrated array and its high performance demonstrate the feasibility of the scheme and provide a solid reference for the integration of EGTs.
RESUMO
All-solid-state lithium metal batteries (LMBs) are regarded as one of the most viable energy storage devices and their comprehensive properties are mainly controlled by solid electrolytes and interface compatibility. This work proposes an advanced poly(vinylidene fluoride-hexafluoropropylene) based gel polymer electrolyte (AP-GPEs) via functional superposition strategy, which involves incorporating butyl acrylate and polyethylene glycol diacrylate as elastic optimization framework, triethyl phosphate and fluoroethylene carbonate as flameproof liquid plasticizers, and Li7La3Zr2O12 nanowires (LLZO-w) as ion-conductive fillers, endowing the designed AP-GPEs/LLZO-w membrane with high mechanical strength, excellent flexibility, low flammability, low activation energy (0.137 eV), and improved ionic conductivity (0.42 × 10-3 S cm-1 at 20 °C) due to continuous ionic transport pathways. Additionally, the AP-GPEs/LLZO-w membrane shows good safety and chemical/electrochemical compatibility with the lithium anode, owing to the synergistic effect of LLZO-w filler, flexible frameworks, and flame retardants. Consequently, the LiFePO4/Li batteries assembled with AP-GPEs/LLZO-w electrolyte exhibit enhanced cycling performance (87.3% capacity retention after 600 cycles at 1 C) and notable high-rate capacity (93.3 mAh g-1 at 5 C). This work proposes a novel functional superposition strategy for the synthesis of high-performance comprehensive GPEs for LMBs.
RESUMO
Titanium dioxide (TiO2) has been widely used as an alternative anodic material for lithium-ion batteries (LIBs) due to its ultrahigh capacity retention and long cycle lifespan. However, the restriction of lithium insertion, intrinsically poor electronic conductivity, and sluggish lithium ionic kinetics of bulk TiO2 hinder their specific capacity and rate performance. Herein, LiTiO2 nanoparticles (NPs) are synthesized via a facile ball milling method by the reaction of anatase TiO2 with LiH. The as-prepared LiTiO2 NPs have strong structural stability and a "zero strain" effect during the repeated intercalation/deintercalation, even at low potential. As anodic materials for LIBs, LiTiO2 NPs exhibit a superior rate performance of â¼100 mA h g-1 at 10C (3350 mA g-1) with a capacity retention of 100% after 1000 cycles, which is 5 times higher than that of the original commercial anatase TiO2 powder. The higher specific capacity of LiTiO2 NPs is attributed to the increased conversion of Ti3+ to Ti2+ on the porous surface of LiTiO2 NPs, which provides a more capacitive contribution. This study not only provides a new fabrication approach toward Ti-based anodes for ultrafast LIBs but also underscores the potential importance of embedding lithium into transition metal oxides as a strategy for boosting their electrochemical performance.