Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PhytoKeys ; 242: 1-8, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38764934

RESUMO

In this study, we describe and illustrate a new species, Primulaweiliei L.S.Yang, Z.K.Wu & G.W.Hu, from the Shennongjia Forestry District, Hubei Province in Central China. It is morphologically assigned to Primulasect.Aleuritia based on its dwarf and hairless habit, long petiole, fruits longer than calyx and covered by farina on the scape. This new species is similar to P.gemmifera and P.munroisubsp.yargongensis in the same section, but it can be distinguished by its smaller calyxes, homostylous flowers, corolla tube throat without annular appendage and only 1-2 flowers in each inflorescence. Based on the assessment conducted according to the IUCN Red List criteria, we propose that P.weiliei be classified as a Critically Endangered (CR) species.

2.
Plant Mol Biol ; 112(6): 325-340, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37380791

RESUMO

The contrasting genome size between homosporous and heterosporous plants is fascinating. Different from the heterosporous seed plants and mainly homosporous ferns, the lycophytes are either heterosporous (Isoetales and Selaginellales) or homosporous (Lycopodiales). Many lycophytes are the resource plants of Huperzine A (HupA) which is invaluable for treating Alzheimer's disease. For the seed-free vascular plants, several high-quality genomes of heterosporous Selaginella, homosporous ferns (maidenhair fern, monkey spider tree fern), and heterosporous ferns (Azolla) have been published and provided important insights into the origin and evolution of early land plants. However, the homosporous lycophyte genome has not been decoded. Here, we assembled the first homosporous lycophyte genome and conducted comparative genomic analyses by applying a reformed pipeline for filtering out non-plant sequences. The obtained genome size of Lycopodium clavatum is 2.30 Gb, distinguished in more than 85% repetitive elements of which 62% is long terminal repeat (LTR). This study disclosed a high birth rate and a low death rate of the LTR-RTs in homosporous lycophytes, but the opposite occurs in heterosporous lycophytes. we propose that the recent activity of LTR-RT is responsible for the immense genome size variation between homosporous and heterosporous lycophytes. By combing Ks analysis with a phylogenetic approach, we discovered two whole genome duplications (WGD). Morover, we identified all the five recognized key enzymes for the HupA biosynthetic pathway in the L. clavatum genome, but found this pathway incomplete in other major lineages of land plants. Overall, this study is of great importance for the medicinal utilization of lycophytes and the decoded genome data will be a key cornerstone to elucidate the evolution and biology of early vascular land plants.


Assuntos
Embriófitas , Gleiquênias , Filogenia , Tamanho do Genoma , Plantas/genética , Gleiquênias/genética , Embriófitas/genética , Sequências Repetidas Terminais , Evolução Molecular
3.
Front Plant Sci ; 14: 1183653, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346120

RESUMO

Germplasm resources are the source of herbal medicine production. The cultivation of superior germplasm resources helps to resolve the conflict between long-term population persistence and growing market demand by consistently producing materials with high quality. The fern species Cibotium barometz is the original plant of cibotii rhizoma ("Gouji"), a traditional Chinese medicine used in the therapy of pain, weakness, and numbness in the lower extremities. Long-history medicinal use has caused serious wild population decline in China. Without sufficient understanding of the species and lineage diversity of Cibotium, it is difficult to propose a targeted conservation scheme at present, let alone select high-quality germplasm resources. In order to fill such a knowledge gap, this study sampled C. barometz and relative species throughout their distribution in China, performed genome skimming to obtain plastome data, and conducted phylogenomic analyses. We constructed a well-supported plastome phylogeny of Chinese Cibotium, which showed that three species with significant genetic differences are distributed in China, namely C. barometz, C. cumingii, and C. sino-burmaense sp. nov., a cryptic species endemic to NW Yunnan and adjacent regions of NE Myanmar. Moreover, our results revealed two differentiated lineages of C. barometz distributed on the east and west sides of a classic phylogeographic boundary that was probably shaped by monsoons and landforms. We also evaluated the resolution of nine traditional barcode loci and designed five new DNA barcodes based on the plastome sequence that can distinguish all these species and lineages of Chinese Cibotium accurately. These novel findings on a genetic basis will guide conservation planners and medicinal plant breeders to build systematic conservation plans and exploit the germplasm resources of Cibotium in China.

4.
Mol Phylogenet Evol ; 179: 107673, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36528332

RESUMO

Spikemoss (Selaginellaceae) is one of the basal lineages of vascular plants. This family has a single genus Selaginella which consists of about 750 extant species. The phylogeny of Selaginellaceae has been extensively studied mainly based on plastid DNA and a few nuclear sequences. However, the placement of the enigmatic sinensis group is a long-term controversy because of the long branch in the plastid DNA phylogeny. The sanguinolenta group is also a phylogenetically problematic clade owing to two alternative positions resulted from different datasets. Here, we newly sequenced 34 mitochondrial genomes (mitogenomes) of individuals representing all seven subgenera and major clades in Selaginellaceae. We assembled the draft mitogenomes and annotated the genes and performed phylogenetic analyses based on the shared 17 mitochondrial genes. Our major results include: (1) all the assembled mitogenomes have complicated structures, unparalleled high GC content and a small gene content set, and the positive correlations among GC content, substitution rates and the number of RNA editing sites hold; (2) the sinensis group was well supported as a member of subg. Stachygynandrum; (3) the sanguinolenta group was strongly resolved as sister to all other Selaginella species except for subg. Selaginella. This study demonstrates the potential of mitogenome data in providing novel insights into phylogenetically recalcitrant problems.


Assuntos
Genoma Mitocondrial , Selaginellaceae , Humanos , Filogenia , Selaginellaceae/genética , Sequência de Bases , Plastídeos/genética
5.
Plant J ; 111(3): 768-784, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35648423

RESUMO

Two factors are proposed to account for the unusual features of organellar genomes: the disruptions of organelle-targeted DNA replication, repair, and recombination (DNA-RRR) systems in the nuclear genome and repetitive elements in organellar genomes. Little is known about how these factors affect organellar genome evolution. The deep-branching vascular plant family Selaginellaceae is known to have a deficient DNA-RRR system and convergently evolved organellar genomes. However, we found that the plastid genome (plastome) of Selaginella sinensis has extremely accelerated substitution rates, a low GC content, pervasive repeat elements, a dynamic network structure, and it lacks direct or inverted repeats. Unexpectedly, its organelle DNA-RRR system is short of a plastid-targeted Recombinase A1 (RecA1) and a mitochondrion-targeted RecA3, in line with other explored Selaginella species. The plastome contains a large collection of short- and medium-sized repeats. Given the absence of RecA1 surveillance, we propose that these repeats trigger illegitimate recombination, accelerated mutation rates, and structural instability. The correlations between repeat quantity and architectural complexity in the Selaginella plastomes support these conclusions. We, therefore, hypothesize that the interplay of the deficient DNA-RRR system and the high repeat content has led to the extraordinary divergence of the S. sinensis plastome. Our study not only sheds new light on the mechanism of plastome divergence by emphasizing the power of cytonuclear integration, but it also reconciles the longstanding contradiction on the effects of DNA-RRR system disruption on genome structure evolution.


Assuntos
Genomas de Plastídeos , Selaginellaceae , DNA , Evolução Molecular , Genomas de Plastídeos/genética , Filogenia , Selaginellaceae/genética
6.
Plant Divers ; 44(2): 141-152, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35505989

RESUMO

Ferns and lycophytes have remarkably large genomes. However, little is known about how their genome size evolved in fern lineages. To explore the origins and evolution of chromosome numbers and genome size in ferns, we used flow cytometry to measure the genomes of 240 species (255 samples) of extant ferns and lycophytes comprising 27 families and 72 genera, of which 228 species (242 samples) represent new reports. We analyzed correlations among genome size, spore size, chromosomal features, phylogeny, and habitat type preference within a phylogenetic framework. We also applied ANOVA and multinomial logistic regression analysis to preference of habitat type and genome size. Using the phylogeny, we conducted ancestral character reconstruction for habitat types and tested whether genome size changes simultaneously with shifts in habitat preference. We found that 2C values had weak phylogenetic signal, whereas the base number of chromosomes (x) had a strong phylogenetic signal. Furthermore, our analyses revealed a positive correlation between genome size and chromosome traits, indicating that the base number of chromosomes (x), chromosome size, and polyploidization may be primary contributors to genome expansion in ferns and lycophytes. Genome sizes in different habitat types varied significantly and were significantly correlated with habitat types; specifically, multinomial logistic regression indicated that species with larger 2C values were more likely to be epiphytes. Terrestrial habitat is inferred to be ancestral for both extant ferns and lycophytes, whereas transitions to other habitat types occurred as the major clades emerged. Shifts in habitat types appear be followed by periods of genomic stability. Based on these results, we inferred that habitat type changes and multiple whole-genome duplications have contributed to the formation of large genomes of ferns and their allies during their evolutionary history.

7.
Mol Phylogenet Evol ; 173: 107507, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35589053

RESUMO

Different from the generally conserved plastomes (plastid genomes) of most land plants, the Selaginellaceae plastomes exhibit dynamic structure, high GC content and high substitution rates. Previous plastome analyses identified strong conflict on several clades in Selaginella, however the factors causing the conflictions and the impact on the phylogenetic inference have not been sufficiently investigated. Here, we dissect the distribution of phylogenetic signals and conflicts in Selaginella sanguinolenta group, the plastome of which is DR (direct repeats) structure and with genome-wide RNA editing. We analyzed the data sets including 22 plastomes representing all species of the S. sanguinolenta group, covering the entire geographical distribution from the Himalayas to Siberia and the Russian Far East regions. We recovered four different topologies by applying multispecies coalescent (ASTRAL) and concatenation methods (IQ-TREE and RAxML) on four data sets of PC (protein-coding genes), NC (non-coding sequences), PCN (the concatenated PC and NC), and RC (predicted RNA editing sites "C" were corrected by "T"), respectively. Six monophyletic clades, S. nummularifolia clade, S. rossii clade, S. sajanensis clade, S. sanguinolenta I clade, S. sanguinolenta II clade, and S. sanguinolenta III clade, were consistently resolved and supported by the characteristics of GC content, RNA editing frequency, and gene content. However, the relationships among these clades varied across the four topologies. To explore the underlying causes of the uncertainty, we compared the phylogenetic signals of the four topologies. We identified that the sequence types (coding versus non-coding), outlier genes (genes with extremely high |ΔGLS| values), and C-to-U RNA editing frequency in the protein-coding genes were responsible for the unstable phylogenomic relationship. We further revealed a significant positive correlation between the |ΔGLS| values and the variation coefficient of the RNA editing number. Our results demonstrated that the coalescent method performed better than the concatenation method in overcoming the problems caused by outlier genes and extreme RNA editing events. Our study particularly focused on the importance of exploring the plastid phylogenomic conflicts and suggested conducting concatenated analyses cautiously when adopting organelle genome data.


Assuntos
Genomas de Plastídeos , Selaginellaceae , Evolução Molecular , Filogenia , Plastídeos/genética , Edição de RNA , Selaginellaceae/genética
8.
Mol Ecol ; 31(9): 2679-2697, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35253951

RESUMO

The formation of spatial genetic structure with the presence of extensive gene flow, an evolutionary force which is generally expected to eliminate population-specific variation and maintain genetic homogeneity, remains poorly understood. Homosporous ferns, which spread by spores through wind and possess long distance dispersal capacity, provide an ideal system to investigate such a process. Here, using a homoploid fern lineage, the Athyrium sinense complex, we used reduced-representation genomic data to examine spatial genetic structure and explored potential driving forces including geographical distance, environment, climatic history and external dispersal constraints. Our findings showed a clear north-south divergence at the genetic, morphological and ecological levels between both sides of 35°N in East Asia. Fluctuant and heterogeneous climatic condition was demonstrated to play a crucial role during the formation of the divergence. Our results suggested that this lineage was able to migrate southward and colonize new habitat as a result of the Quaternary climatic fluctuation. Furthermore, the present genetic structure is attributed to adaptation to heterogeneous environments, especially temperature difference. In addition to ecological adaptation, we found clues showing that canopy density, wind direction as well as habitat continuity were all likely to constrain the effect of gene flow. These results demonstrated a diversification process without ploidy changes in ferns providing new insights for our present knowledge on ferns' spatio-temporal evolutionary pattern. In particular, our study highlights the influence of environmental heterogeneity in driving genetic divergence against strong dispersal capacity.


Assuntos
Gleiquênias , Aclimatação , Ecossistema , Gleiquênias/genética , Estruturas Genéticas , Variação Genética/genética
9.
Nat Plants ; 8(2): 125-135, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35102275

RESUMO

The rapid Cretaceous diversification of flowering plants remains Darwin's 'abominable mystery' despite numerous fossil flowers discovered in recent years. Wildfires were frequent in the Cretaceous and many such early flower fossils are represented by charcoalified fragments, lacking complete delicate structures and surface textures, making their similarity to living forms difficult to discern. Furthermore, scarcity of information about the ecology of early angiosperms makes it difficult to test hypotheses about the drivers of their diversification, including the role of fire in shaping flowering plant evolution. We report the discovery of two exquisitely preserved fossil flower species, one identical to the inflorescences of the extant crown-eudicot genus Phylica and the other recovered as a sister group to Phylica, both preserved as inclusions together with burned plant remains in Cretaceous amber from northern Myanmar (~99 million years ago). These specialized flower species, named Phylica piloburmensis sp. nov. and Eophylica priscastellata gen. et sp. nov., exhibit traits identical to those of modern taxa in fire-prone ecosystems such as the fynbos of South Africa, and provide evidence of fire adaptation in angiosperms.


Assuntos
Âmbar , Rhamnaceae , Ecossistema , Fósseis , Mianmar
10.
Cladistics ; 37(6): 717-727, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34841589

RESUMO

The polygrammoids (Polypodiaceae) are the most species-rich and diversified epiphytic fern lineages, and hold an important role to understand the deep diverging events and rapid adaptation to changing environments in the plant tree of life. Despite progress in the phylogeny of this group of ferns in previous multilocus phylogenetic studies, uncertainty remains especially in backbone relationships among closely related clades, and the phylogenetic placement of recalcitrant species or lineages. Here, we investigated the deep phylogenetic relationships within Polypodiaceae by sampling all major lineages and using 81 plastid genomes (plastomes), of which 70 plastomes were newly sequenced with high-throughput sequencing technology. Based on parsimony, maximum-likelihood, Bayesian and multispecies coalescent analyses of genome skimming data, we achieved a better resolution of the backbone phylogeny of Polypodiaceae. Using simulated data matrices, we detected that potential phylogenetic artefacts, such as long-branch attraction and insufficient taxonomic sampling, may have a confounding impact on the incongruence of phylogenetic inferences. Furthermore, our phylogenetic analyses offer greater resolution than previous multilocus studies, providing a robust framework for future phylogenetic implications on the subfamilial taxonomy of Polypodiaceae. Our phylogenomic study not only demonstrates the advantage of a character-rich plastome dataset for resolving the recalcitrant lineages that have undergone rapid radiation, but also sheds new light on integrative explorations understanding the evolutionary history of large fern groups in the genomic era.


Assuntos
Plastídeos/genética , Polypodiaceae/genética , Genomas de Plastídeos , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Plastídeos/classificação , Polypodiaceae/classificação
12.
Mol Phylogenet Evol ; 161: 107176, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33866009

RESUMO

The establishment of a segregate lepisoroid fern genus Ellipinema was mainly to accommodate the isolated position of Lepisorus jakonensis (Polypodiaceae) recovered in plastid gene tree. Using newly obtained nuclear data, we recovered that Ellipinema and allied genera, such as Lepidomicrosorium, Lemmaphyllum, Neolepisorus, Paragramma, Tricholepidium and Weatherbya are deeply nested within Lepisorus. The nuclear phylogeny showing incongruent phylogenetic placement in comparison with plastid results perhaps indicated ancient hybridization events. The diagnostic morphology characterizing Ellipinema - elliptic scale-like paraphyses, which is shared by all the taxa of sect. Lepisorus and sect. Hymenophyton - falls within the range of continuous variation in the type species Ellipinema jakonense (=Lepisorus jakonensis). Our study, which integrated molecular and morphological data, demonstrates that the segregation of Ellipinema and ×Ellipisorus (= ×Lepinema Li Bing Zhang & Liang Zhang, nom. illeg.) from Lepisorus should be rejected.


Assuntos
Filogenia , Polypodiaceae/classificação , Polypodiaceae/genética , DNA de Plantas/genética , Plastídeos/genética , Polypodiaceae/citologia
13.
PhytoKeys ; 174: 95-106, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33776525

RESUMO

Hoya pyrifolia, a new species of Apocynaceae from Yunnan Province, China, is described and illustrated. Results from phylogenetic analyses, based on combined DNA fragments of the nuclear ribosomal external transcribed spacer (ETS), intergeneric transcribed spacer (ITS) and three plastid DNA fragments (matK, psbA-trnH and trnT-trnL), showed that the new species was nested within a clade, including Hoya species distributed in the subtropical foothills of the Himalayas and the Tibet-Sichuan Plateau. Morphologically, the new species can be distinguished from its close relatives by its pyriform and slightly pubescent leaves, as well as the 4-flowered inflorescences.

15.
PhytoKeys ; 178: 81-94, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36761040

RESUMO

Although taxonomists target the remote wild regions to discover new species, taxa lacking a comprehensive and modern systematic treatment may be the new hotspot for biodiversity discovery. The development of molecular systematics integrated with microscopic observation techniques has greatly improved the ability of taxonomists to identify species correctly. Vittariacentrochinensis Ching ex J.F. Cheng, regarded as a synonym of Haplopterisfudzinoi (Makino) E.H.Crane, remained hidden from the eyes of fern taxonomists for more than 20 years. Herein, we collected several population samples of V.centrochinensis by performing molecular phylogenetic analysis of five cpDNA regions (rbcL, atpA, matK, ndhF, and trnL-trnF) and through micromophological observation of specimens which differs from H.fudzinoi by lamina width and exospores. Considering the differences in morphology, geographical range, and genetic distance between these two species, we formally recognized V.centrochinensis as an authentic species and proposed a new combination Haplopteriscentrochinensis (Ching ex J.F.Cheng) Y.H.Yan, Z.Y.Wei & X.C.Zhang, comb. nov. Our findings demonstrate that several taxa in synonyms are missing, and nowadays taxonomy should also include re-evaluation of the past taxonomy.

16.
Plant J ; 104(6): 1657-1672, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33073395

RESUMO

Plastids and mitochondria are endosymbiotic organelles that store genetic information. The genomes of these organelles generally exhibit contrasting patterns regarding genome architecture and genetic content. However, they have similar genetic features in Selaginellaceae, and little is known about what causes parallel evolution. Here, we document the multipartite plastid genomes (plastomes) and the highly divergent mitochondrial genomes (mitogenomes) from spikemoss obtained by combining short- and long-reads. The 188-kb multipartite plastome has three ribosomal operon copies in the master genomic conformation, creating the alternative subgenomic conformation composed of 110- and 78-kb subgenomes. The long-read data indicated that the two different genomic conformations were present in almost equal proportions in the plastomes of Selaginella nipponica. The mitogenome of S. nipponica was assembled into 27 contigs with a total size of 110 kb. All contigs contained directly arranged repeats at both ends, which introduced multiple conformations. Our results showed that plastomes and mitogenomes share high tRNA losses, GC-biased nucleotides, elevated substitution rates and complicated organization. The exploration of nuclear-encoded organelle DNA replication, recombination and repair proteins indicated that, several single-targeted proteins, particularly plastid-targeted recombinase A1, have been lost in Selaginellaceae; conversely, the dual-targeted proteins remain intact. According to the reported function of recombinase A1, we propose that the plastomes of spikemoss often fail to pair homologous sequences during recombination, and the dual-targeted proteins play a key role in the convergent genetic features of plastomes and mitogenomes. Our results provide a distinctive evolutionary pattern of the organelle genomes in Selaginellaceae and evidence of their convergent evolution.


Assuntos
Genoma de Planta/genética , Genomas de Plastídeos/genética , Selaginellaceae/genética , Evolução Molecular , Rearranjo Gênico/genética , Genes de Plantas/genética , Genoma Mitocondrial/genética , Huperzia/genética , Organelas/genética , Recombinação Genética/genética
17.
Mol Phylogenet Evol ; 147: 106788, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32173413

RESUMO

Selaginellaceae have been shown to be monophyletic in previous studies, and include only the single genus Selaginella. However, the two most recent classifications of the genus disagree in terms of the number of subgenera recognized, and the position of problematic clades such as the "sanguinolenta" group, which has been resolved in quite different positions in different studies. Here, we performed a plastid-genome based phylogenomic analysis of Selaginellaceae to address this problem. The sanguinolenta group, represented here by three species, was resolved as sister to the remaining members of subg. Stachygynandrum. Additionally, subg. Exaltatae, subg. Ericetorum, and subg. Gymnogynum in clade A clustered into a well supported monophyletic clade but with conflicting topology between subgenera inside, which is possibly attributed to the early divergence among them. We uncovered substantial variation in both synonymous (dS) and nonsynonymous (dN) substitution rate, and GC content in plastomes of Selaginellaceae. The values of dS, dN, and GC content were significantly higher than those of other lycophytes (Isoetaceae and Lycopodiaceae). We observed a significant positive correlation between the high GC content, and the elevated dS and dN rates. In addition, the dS and dN values inferred among branches of Selaginellaceae were extremely variable. Our data indicate that this unevenly distributed substitution rate likely reflected relaxed or intensified selection among different lineages, which is possibly related to the inconsistency of the subgeneric phylogenetic topologies of Selaginellaceae.


Assuntos
Genomas de Plastídeos , Filogenia , Selaginellaceae/genética , Composição de Bases/genética , Sequência de Bases , Evolução Molecular , Funções Verossimilhança , Fases de Leitura Aberta/genética , Selaginellaceae/classificação
18.
Cladistics ; 36(3): 235-258, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-34618921

RESUMO

The fern genus Lepisorus represents one of the most complicated and controversial lineages in Polypodiaceae, with about 80 species which have been classified into several separate genera, and is notorious for its taxonomic difficulty. Despite progress in recent phylogenetic studies of the family Polypodiaceae involving Lepisorus and its allies, the deep phylogenetic relationship within this group of ferns is still unresolved, and no formal infrageneric classification has been proposed. This contribution presents the most comprehensive phylogenetic analysis of the genus, with 72% species sampled, using a total-evidence approach based on eight plastid markers and ≤25 morphological characters for each species. The analyses resolve the backbone relationship and yield the most robust phylogenetic framework to date. Congruent with previous studies but with new findings, the results herein show that Lepisorus is monophyletic when Neolepisorus, Lemmaphyllum, Tricholepidium, Neocheiropteris and Lepidomicrosorium are included, as well as Lepisorus jakonensis and Paragramma. Furthermore, 17 well-resolved clades are found in the phylogenetic topology, which can be characterized by morphological synapomorphies from traits of rhizome scales, laminae, sori and paraphyses. Based on molecular and morphological evidence, a new infrageneric classification system of Lepisorus is proposed which subdivided Lepisorus into 17 sections.


Assuntos
Polypodiaceae/classificação , DNA de Cloroplastos , Filogenia , Plastídeos/genética , Polypodiaceae/anatomia & histologia , Polypodiaceae/genética , Análise de Sequência de DNA
19.
Cladistics ; 36(4): 443-445, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34618967

RESUMO

Here, we publish Lepisorus sect. Paragramma (Blume) C.F. Zhao, R. Wei & X.C. Zhang as a combinatio nova to replace the section name in Zhao et al. (2020), which was published as a status nova and turned out to be an invalid name, because we cited an incorrect basionym. A revised infrageneric classification of Lepisorus also is proposed.

20.
Mol Phylogenet Evol ; 143: 106699, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31809851

RESUMO

Despite progress in resolving the phylogeny of twinsorus ferns (Diplazium) based on multilocus phylogenetic studies, uncertainty remains especially for deep, or backbone relationships among closely related clades, suggesting a classic case of rapid evolutionary radiation. Here, we investigated the deep phylogenetic relationships within Diplazium by sampling all major clades and using 51 plastid genomes (plastomes), of which 38 were newly sequenced with high-throughput sequencing technology, resulting more than 127,000 informative sites. Using parsimony, maximum likelihood and Bayesian analyses of plastome sequences, we largely resolved the backbone of the phylogeny of Diplazium with strong support. However, we also detected phylogenetic incongruence among different datasets and moderately to poorly supported relationships, particularly at several extremely short internal branches. By using phylogenetic tree space and topology-clustering analyses, we provide evidence that conflicting phylogenetic signals can be found across the trees estimated from individual chloroplast protein-coding genes, which may underlie the difficulty of systematics of Diplazium. Furthermore, our phylogenetic estimate offers more resolution over previous multilocus analyses, providing a framework for future taxonomic revisions of sectional classification of Diplazium. Our study demonstrates the advantage of a character-rich plastome dataset, combining the comparison of different phylogenetic methods, for resolving the recalcitrant lineages that have undergone rapid radiation and dramatic changes in evolutionary rates.


Assuntos
Gleiquênias/classificação , Genomas de Plastídeos/genética , Teorema de Bayes , DNA de Plantas/química , DNA de Plantas/genética , Evolução Molecular , Gleiquênias/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Funções Verossimilhança , Filogenia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA