Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 652
Filtrar
1.
Med Phys ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38994881

RESUMO

BACKGROUND: Cardiac stereotactic body radiotherapy (CSBRT) is an emerging and promising noninvasive technique for treating refractory arrhythmias utilizing highly precise, single or limited-fraction high-dose irradiations. This method promises to revolutionize the treatment of cardiac conditions by delivering targeted therapy with minimal exposure to surrounding healthy tissues. However, the dynamic nature of cardiorespiratory motion poses significant challenges to the precise delivery of dose in CSBRT, introducing potential variabilities that can impact treatment efficacy. The complexities of the influence of cardiorespiratory motion on dose distribution are compounded by interplay and blurring effects, introducing additional layers of dose uncertainty. These effects, critical to the understanding and improvement of the accuracy of CSBRT, remain unexplored, presenting a gap in current clinical literature. PURPOSE: To investigate the cardiorespiratory motion characteristics in arrhythmia patients and the dosimetric impact of interplay and blurring effects induced by cardiorespiratory motion on CSBRT plan quality. METHODS: The position and volume variations in the substrate target and cardiac substructures were evaluated in 12 arrhythmia patients using displacement maximum (DMX) and volume metrics. Moreover, a four-dimensional (4D) dose reconstruction approach was employed to examine the dose uncertainty of the cardiorespiratory motion. RESULTS: Cardiac pulsation induced lower DMX than respiratory motion but increased the coefficient of variation and relative range in cardiac substructure volumes. The mean DMX of the substrate target was 0.52 cm (range: 0.26-0.80 cm) for cardiac pulsation and 0.82 cm (range: 0.32-2.05 cm) for respiratory motion. The mean DMX of the cardiac structure ranged from 0.15 to 1.56 cm during cardiac pulsation and from 0.35 to 1.89 cm during respiratory motion. Cardiac pulsation resulted in an average deviation of -0.73% (range: -4.01%-4.47%) in V25 between the 3D and 4D doses. The mean deviations in the homogeneity index (HI) and gradient index (GI) were 1.70% (range: -3.10%-4.36%) and 0.03 (range: -0.14-0.11), respectively. For cardiac substructures, the deviations in D50 due to cardiac pulsation ranged from -1.88% to 1.44%, whereas the deviations in Dmax ranged from -2.96% to 0.88% of the prescription dose. By contrast, the respiratory motion led to a mean deviation of -1.50% (range: -10.73%-4.23%) in V25. The mean deviations in HI and GI due to respiratory motion were 4.43% (range: -3.89%-13.98%) and 0.18 (range: -0.01-0.47) (p < 0.05), respectively. Furthermore, the deviations in D50 and Dmax in cardiac substructures for the respiratory motion ranged from -0.28% to 4.24% and -4.12% to 1.16%, respectively. CONCLUSIONS: Cardiorespiratory motion characteristics vary among patients, with the respiratory motion being more significant. The intricate cardiorespiratory motion characteristics and CSBRT plan complexity can induce substantial dose uncertainty. Therefore, assessing individual motion characteristics and 4D dose reconstruction techniques is critical for implementing CSBRT without compromising efficacy and safety.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38995073

RESUMO

BACKGROUND: Gut microbiota imbalance and sarcopenia are frequently observed in the elderly population. Gut Microbiota and their metabolites are considered risk factors contributing to the heightened risk of sarcopenia, but whether these associations are causal remains unclear. METHODS: We conducted linkage disequilibrium score regression and two-sample Mendelian randomization methods with SNPs sourced from large-scale genome-wide association studies as instrumental variables to examine the causal associations linking gut microbiota with their metabolites to the sarcopenia. Following the MR analysis, subsequent sensitivity analyses were conducted to reinforce the robustness and credibility of the obtained results. RESULTS: MR analysis yielded compelling evidence demonstrating the correlation between genetically predicted gut microbiota and metabolites and the risk of sarcopenia. The abundance of Porphyromonadaceae, Rikenellaceae, Terrisporobacter, and Victivallis was found to be associated with WP. Our study also found suggestive associations of 12 intestinal bacteria with ALM, and of Streptococcaceae, Intestinibacter, Paraprevotella, Ruminococcaceae UCG009, and Sutterella with GS. Specifically, we identified 21 gut microbiota-derived metabolites that may be associated with the risk of sarcopenia. CONCLUSIONS: Utilizing a two-sample MR approach, our study elucidates the causal interplay among gut microbiota, gut microbiota-derived metabolites, and the occurrence of sarcopenia. These findings suggest that gut microbiota and metabolites may represent a potential underlying risk factor for sarcopenia, and offer the promise of novel therapeutic focal points.

3.
Arch Gerontol Geriatr ; 127: 105557, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38964054

RESUMO

OBJECTIVES: The ESPEN and the EASO recently developed consensus criteria for sarcopenic obesity (SO), employing the skeletal muscle mass to weight (SMM/W) ratio. Emerging evidence suggests that adjusting skeletal muscle mass for body mass index (SMM/BMI) could enhance the predictive accuracy for health outcomes. We aimed to validate the ESPEN/EASO criteria and explore the potential benefits of the SMM/BMI adjustment in predicting falls among older adults in Western China. METHODS: We conducted a multicenter, cross-sectional study and included community-dwelling older adults. The diagnosis of SO was determined using the standard ESPEN/EASO consensus criteria (SOESPEN) and a modified version adjusting SMM/BMI (SOESPEN-M). The associations of SOESPEN, SOESPEN-M, and their components with falls were analyzed. RESULTS: Among the 1353 participants, the prevalence of SO was 13.2 % (SOESPEN) and 11.4 % (SOESPEN-M), which increased with age and higher BMI levels. Within participants with a normal BMI, 4.2 % and 6.2 % were found to have SOESPEN and SOESPEN-M, respectively. SMM/W and SMM/BMI negatively correlated with fall risk (p=0.042 and p=0.021, respectively). Upon adjusting for confounders, only SOESPEN was significantly associated with falls (odds ratios [OR] 1.61, 95 % confidence interval [CI] 1.08 to 2.40), whereas the association for SOESPEN-M did not achieve significance (OR 1.55, 95 % CI 0.99 to 2.43). CONCLUSIONS: This research validated the ESPEN/EASO criteria (SOESPEN) and their modified version (SOESPEN-M) among community-dwelling older adults in Western China. The SMM/BMI adjustment appears to offer a lower estimate of SO prevalence, with only SOESPEN showing a significant association with falls.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38965667

RESUMO

Limited by the inefficiency of the conventional trial-and-error method and the boundless compositional design space of high-entropy alloys (HEAs), accelerating the discovery of superior-performing high-entropy nitride (HEN) coatings remains a formidable challenge. Herein, the superhard HEN coatings were designed and prepared using the rapidly developing data-driven model machine learning (ML). A database containing hardness and different features of HEN coatings was established and categorized into four subsets covering the information on composition, composition-physical descriptors, composition-technique parameters, and composition-physical descriptors-technique parameters. Feature engineering was employed to reduce dimensionality and interpret the impact of features on the evolution of hardness. Both root mean squared error (RMSE) and decision coefficient (R2) were applied to assess the predictive accuracy of ML models with different subsets, proportions of test set, and algorithms. The model with best predicted performance was used to explore superhard HEN coatings in a predefined virtual space. Among the generated 5-/6-/7-/8-component (excluding N) systems, the coating possessing highest hardness was individually selected for further preparation. Four newly prepared coatings achieved the superhard level with an average prediction error of 7.83%. The morphology, chemical composition, structure, and hardness of the newly prepared coatings were discussed. The nanocrystal-amorphous nanocomposite structure of the novel AlCrNbSiTiN coating with the highest hardness of 45.77 GPa was revealed. The results demonstrated that ML can effectively guide the design and composition optimization of superb-performance protective HEN coatings.

5.
Neurosurg Focus ; 56(6): E18, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38823051

RESUMO

OBJECTIVE: This study aimed to investigate the differences in clinical features, diagnostic examination, treatment, and pathological results between adult-onset and pediatric-onset tethered cord syndrome (TCS). METHODS: The authors searched the PubMed, Embase, and Cochrane Library databases through January 2023 for reports on TCS, extracting information on clinical features, imaging data, treatment modalities, prognosis, and pathological research results. A total of 6135 cases from 246 articles were included in the analysis. This review was conducted in accordance with the 2020 PRISMA guidelines and registered on PROSPERO. RESULTS: The most common adult clinical manifestations were pain, urinary symptoms, and numbness; in children, they were urinary symptoms, skin lesions, bowel symptoms, and unspecific motor deficits. Surgical treatment was the primary approach for both adults and children, with a higher clinical improvement rate observed in adults. However, adults also had a higher rate of surgical complications than children. TCS pathological studies have not yet identified the differences between adults and children, and the pathogenesis of adult-onset TCS requires further investigation. CONCLUSIONS: Adult-onset and pediatric-onset TCS exhibit certain differences in clinical characteristics, diagnostic examinations, and treatments. However, significant differences have not been found in current pathological studies between adults and children. Systematic review registration no.: CRD42023479450 (www.crd.york.ac.uk/prospero).


Assuntos
Defeitos do Tubo Neural , Humanos , Defeitos do Tubo Neural/cirurgia , Defeitos do Tubo Neural/diagnóstico , Criança , Adulto , Idade de Início
6.
J Pharm Biomed Anal ; 248: 116290, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38878456

RESUMO

TIMP metallopeptidase inhibitor 3 (TIMP-3) may contribute to the pathogenesis of venous thromboembolism (VTE). However, few studies have investigated the effect of TIMP-3 on VTE. Therefore, a two-sample Mendelian randomization (MR) analysis was conducted to investigate the association between TIMP-3 levels and VTE. Seven independent single-nucleotide polymorphisms (SNPs) for TIMP-3 levels were obtained from a published genome-wide association study (the KORA Consortium, including 997 Europeans). We obtained outcome datasets for VTE, pulmonary embolism (PE), and deep vein thrombosis (DVT) from the FinnGen Consortium. The primary analytical method used in the MR analysis was the inverse variance weighted (IVW) method. To enhance the robustness of the MR results, some other MR methods including weighted median, MR-Egger, and MR-PRESSO were conducted. Moreover, several sensitivity analyses were performed to identify potential horizontal pleiotropy and heterogeneity. In primary IVW MR analyses, per log increase in genetically predicted TIMP-3 levels were positively associated with the incidence of VTE (odds ratio [OR], 1.03; 95 % confidence interval (CI), 1.01, 1.06; P = 0.010), PE (OR, 1.04; 95 % CI, 1.01, 1.08; P = 0.009), and DVT (OR, 1.06; 95 % CI, 1.02, 1.10; P= 0.003). The results of the weighted median, MR-Egger, and MR-PRESSO were similar to the main findings. No unbalanced pleiotropy or heterogeneity was observed. The study suggests that genetically predicted high levels of TIMP-3 may be associated with an increased risk of VTE. These findings indicate that strategies targeting TIMP-3 may provide a basis for the prevention and treatment of VTE. Further investigation is required to clarify this potential mechanism.

7.
Stress Biol ; 4(1): 29, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861095

RESUMO

In eukaryotes, the nuclear membrane that encapsulates genomic DNA is composed of an inner nuclear membrane (INM), an outer nuclear membrane (ONM), and a perinuclear space. SUN proteins located in the INM and KASH proteins in the ONM form the SUN-KASH NM-bridge, which functions as the junction of the nucleocytoplasmic complex junction. Proteins containing the SUN domain showed the highest correlation with differentially accumulated proteins (DAPs) in the wheat response to fungal stress. To understand the characteristics of SUN and its associated proteins in wheat responding to pathogen stress, here we investigated and comprehensive analyzed SUN- and KASH-related proteins among the DAPs under fungi infection based on their conserved motifs. In total, four SUN proteins, one WPP domain-interacting protein (WIP), four WPP domain-interacting tail-anchored proteins (WIT), two WPP proteins and one Ran GTPase activating protein (RanGAP) were identified. Following transient expression of Nicotiana benthamiana, TaSUN2, TaRanGAP2, TaWIT1 and TaWIP1 were identified as nuclear membrane proteins, while TaWPP1 and TaWPP2 were expressed in both the nucleus and cell membrane. RT-qPCR analysis demonstrated that the transcription of TaSUN2, TaRanGAP2 and TaWPP1 were strongly upregulated in response to fungal infection. Furthermore, using the bimolecular fluorescence complementation, the luciferase complementation and a nuclear and split-ubiquitin-based membrane yeast two-hybrid systems, we substantiated the interaction between TaSUN2 and TaWIP1, as well as TaWIP1/WIT1 and TaWPP1/WPP2. Silencing of TaSUN2, TaRanGAP2 and TaWPP1 in wheat leaves promoted powdery mildew infection and hyphal growth, and reduced the expression of TaBRI1, TaBAK1 and Ta14-3-3, indicating that these NM proteins play a positive role in resistance to fungal stress. Our study reveals the characteristics of NM proteins and propose the preliminary construction of SUN-WIP-WPP-RanGAP complex in wheat, which represents a foundation for detail elucidating their functions in wheat in future.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38885107

RESUMO

Monocular Depth Estimation (MDE) plays a vital role in applications such as autonomous driving. However, various attacks target MDE models, with physical attacks posing significant threats to system security. Traditional adversarial training methods, which require ground-truth labels, are not directly applicable to MDE models that lack ground-truth depth. Some self-supervised model hardening techniques (e.g., contrastive learning) overlook the domain knowledge of MDE, resulting in suboptimal performance. In this work, we introduce a novel self-supervised adversarial training approach for MDE models, leveraging view synthesis without the need for ground-truth depth. We enhance adversarial robustness against real-world attacks by incorporating L0-norm-bounded perturbation during training. We evaluate our method against supervised learning-based and contrastive learning-based approaches specifically designed for MDE. Our experiments with two representative MDE networks demonstrate improved robustness against various adversarial attacks, with minimal impact on benign performance. Our code: https://github.com/Bob-cheng/DepthModelHardening.

9.
Hepatology ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38899975

RESUMO

BACKGROUND AND AIMS: Liver HCC is the second leading cause of cancer-related deaths worldwide. The heterogeneity of this malignancy is driven by a wide range of genetic alterations, leading to a lack of effective therapeutic options. In this study, we conducted a systematic multi-omics characterization of HCC to uncover its metabolic reprogramming signature. APPROACH AND RESULTS: Through a comprehensive analysis incorporating transcriptomic, metabolomic, and lipidomic investigations, we identified significant changes in metabolic pathways related to glucose flux, lipid oxidation and degradation, and de novo lipogenesis in HCC. The lipidomic analysis revealed abnormal alterations in glycerol-lipids, phosphatidylcholine, and sphingolipid derivatives. Machine-learning techniques identified a panel of genes associated with lipid metabolism as common biomarkers for HCC across different etiologies. Our findings suggest that targeting phosphatidylcholine with saturated fatty acids and long-chain sphingolipid biosynthesis pathways, particularly by inhibiting lysophosphatidylcholine acyltransferase 1 ( LPCAT1 ) and ceramide synthase 5 ( CERS5 ) as potential therapeutic strategies for HCC in vivo and in vitro. Notably, our data revealed an oncogenic role of CERS5 in promoting tumor progression through lipophagy. CONCLUSIONS: In conclusion, our study elucidates the metabolic reprogramming nature of lipid metabolism in HCC, identifies prognostic markers and therapeutic targets, and highlights potential metabolism-related targets for therapeutic intervention in HCC.

10.
Glob Heart ; 19(1): 45, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737730

RESUMO

Objective: Skeletal muscle mass and cardiac structure change with age. It is unclear whether the loss of skeletal muscle mass (SMM) is accompanied by a decrease in heart mass loss. The aim of this study is to investigate the relationship of left ventricular mass (LVM) with sarcopenia and its severity in elderly inpatients. Methods: Seventy-one sarcopenia subjects and 103 non-sarcopenia controls were enrolled in this study. Bioelectrical impedance analysis, handgrip strength, and 5-time chair stand test were used to evaluate SMM, muscle strength, and physical performance, respectively. Myocardial structure and function were assessed by echocardiography. Sarcopenia was diagnosed according to the Asian Working Group for Sarcopenia criteria 2019. Results: Sarcopenic patients had smaller left ventricular sizes and LVM than non-sarcopenic controls. Severe sarcopenic patients had smaller left ventricular sizes and LVM than non-severe sarcopenic patients. In univariate regression analysis, body mass index (BMI), cardiac size, and LVM were positively correlated with SMM or SMI. In multivariate regression analysis, BMI and LVM were independently correlated with SMM and SMI. The combined measurement of LVM and BMI predicts sarcopenia with 66.0% sensitivity and 88.7% specificity (AUC: 0.825; 95% CI: (0.761, 0.889); p < 0.001). Conclusion: In hospitalized elderly patients, decreased left ventricular mass is associated with sarcopenia and its severity, and the combined measurement of LVM and BMI has a predictive value for sarcopenia.


Assuntos
Ecocardiografia , Ventrículos do Coração , Sarcopenia , Índice de Gravidade de Doença , Humanos , Sarcopenia/fisiopatologia , Sarcopenia/diagnóstico por imagem , Sarcopenia/diagnóstico , Sarcopenia/epidemiologia , Masculino , Feminino , Idoso , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/fisiopatologia , Pacientes Internados , Idoso de 80 Anos ou mais , Função Ventricular Esquerda/fisiologia , Músculo Esquelético/fisiopatologia , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Índice de Massa Corporal
11.
Mikrochim Acta ; 191(6): 355, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809308

RESUMO

Carbon dots (CDs) are nanoscale carbon materials with unique optical properties and biocompatibility. Their applications are limited by their tendency to aggregate or oxidize in aqueous environments. Turning weakness to strengths, CDs can be incorporated with hydrogels, which are three-dimensional networks of crosslinked polymers that can retain large amounts of water. Hydrogels can provide a stable and tunable matrix for CDs, enhancing their fluorescence, stability, and functionality. CDs@hydrogels, known for their ease of synthesis, strong binding capabilities, and rich surface functional groups, have emerged as promising composite materials. In this review, recent advances in the synthesis and characterization of CDs@hydrogels, composite materials composed of CDs and various types of natural or synthetic hydrogels, are summarized. The potential applications of CDs@hydrogels in fluorescence sensing, adsorption, drug delivery, antibacterial activity, flexible electronics, and energy storage are also highlighted. The current challenges and future prospects of CDs@hydrogels systems for the novel functional materials are discussed.

12.
Phys Chem Chem Phys ; 26(22): 16039-16047, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38779839

RESUMO

Due to its adverse environmental and human health hazards, addressing the elimination of nitric oxide (NO) has become a pressing concern for modern society. Currently, electrochemical NO reduction provides a new alternative to traditional selective catalytic reduction technology under mild reaction conditions. However, the complexity and variability of products make the coverage of NO an influencing factor that needs to be investigated. Hence, this study delves into the coverage-sensitive mechanism of electrochemical NO reduction on cost-effective perovskite catalysts, using SrTiO3 as an example, through density functional theory calculations. Phase diagrams analysis reveals that the coverage range from 0.25 to 1.00 monolayer (ML) coverage is favorable for NO adsorption. Gibbs free energy results indicate that the selectivity is significantly influenced by NO coverage. NH3 is likely to be generated at low coverage, while N2O and N2 are more likely to be produced at high coverage through a dimer mechanism. Charge analysis suggests that the charge transfer and Ti-O bond strength between reactants and catalysts are crucial factors. This work not only provides deep insights into coverage-sensitive reaction mechanisms but also is a guideline towards further rational design of high-performance perovskite catalysts.

13.
Neuropharmacology ; 253: 109986, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38705569

RESUMO

Stroke, the leading cause of disability and cognitive impairment, is also the second leading cause of death worldwide. The drugs with multi-targeted brain cytoprotective effects are increasingly being advocated for the treatment of stroke. Irisin, a newly discovered myokine produced by cleavage of fibronectin type III domain 5, has been shown to regulate glucose metabolism, mitochondrial energy, and fat browning. A large amount of evidence indicated that irisin could exert anti-inflammatory, anti-apoptotic, and antioxidant properties in a variety of diseases such as myocardial infarction, inflammatory bowel disease, lung injury, and kidney or liver disease. Studies have found that irisin is widely distributed in multiple brain regions and also plays an important regulatory role in the central nervous system. The most common cause of a stroke is a sudden blockage of an artery (ischemic stroke), and in some circumstances, a blood vessel rupture can also result in a stroke (hemorrhagic stroke). After a stroke, complicated pathophysiological processes lead to serious brain injury and neurological dysfunction. According to recent investigations, irisin may protect elements of the neurovascular unit by acting on multiple pathological processes in stroke. This review aims to outline the currently recognized effects of irisin on stroke and propose possible directions for future research.


Assuntos
Fibronectinas , Fármacos Neuroprotetores , Acidente Vascular Cerebral , Fibronectinas/metabolismo , Humanos , Animais , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos
14.
Inorg Chem ; 63(25): 11554-11565, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38815997

RESUMO

Efficient and multiple CO2 utilization into high-value-added chemicals holds significant importance in carbon neutrality and industry production. However, most catalysis systems generally exhibit only one type of CO2 transformation with the efficiency to be improved. The restricted abundance of active catalytic sites or an inefficient utilization rate of these sites results in the constraint. Consequently, we designed and constructed two metal hydrogen-bonded organic frameworks (M-HOFs) {[M3(L3-)2(H2O)10]·2H2O}n (M = Co (1), Ni (2); L = 1-(4-carboxyphenyl)-1H-pyrazole-3,5-dicarboxylic acid) in this research. 1 and 2 are well-characterized, and both show excellent stability. The networks connected by multiple hydrogen bonds enhance the structural flexibility and create accessible Lewis acidic sites, promoting interactions between the substrates and catalytic centers. This enhancement facilitates efficient catalysis for two types of CO2 transformations, encompassing both cycloaddition reactions with epoxides and aziridines to afford cyclic carbonates and oxazolidinones. The catalytic activities (TON/TOF) are superior compared with those of most other catalysts. These heterogeneous catalysts still exhibited high performance after being reused several times. Mechanistic studies indicated intense interactions between the metal sites and substrates, demonstrating the reason for efficient catalysis. This marks the first instance on M-HOFs efficiently catalyzing two types of CO2 conversions, finding important significance for catalyst design and CO2 utilization.

15.
Ecotoxicol Environ Saf ; 280: 116476, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38820822

RESUMO

Rural waste accumulation leads to heavy metal soil pollution, impacting microbial communities. However, knowledge gaps exist regarding the distribution and occurrence patterns of bacterial communities in multi-metal contaminated soil profiles. In this study, high-throughput 16 S rRNA gene sequencing technology was used to explore the response of soil bacterial communities to various heavy metal pollution in rural simple waste dumps in karst areas of Southwest China. The study selected three habitats in the center, edge, and uncontaminated areas of the waste dump to evaluate the main factors driving the change in bacterial community composition. Pollution indices reveal severe contamination across all elements, except for moderately polluted lead (Pb); contamination severity ranks as follows: Mn > Cd > Zn > Cr > Sb > V > Cu > As > Pb. Proteobacteria, Actinobacteria, Chloroflexi, and Acidobacteriota predominate, collectively constituting over 60% of the relative abundance. Analysis of Chao and Shannon indices demonstrated that the waste dump center boasted the greatest bacterial richness and diversity. Correlation data indicated a predominant synergistic interaction among the landfill's bacterial community, with a higher number of positive associations (76.4%) compared to negative ones (26.3%). Network complexity was minimal at the dump's edge. RDA analysis showed that Pb(explained:46%) and Mn(explained:21%) were the key factors causing the difference in bacterial community composition in the edge area of the waste dump, and AK(explained:42.1%) and Cd(explained:35.2%) were the key factors in the center of the waste dump. This study provides important information for understanding the distribution patterns, co-occurrence networks, and environmental response mechanisms of bacterial communities in landfill soils under heavy metal stress, which helps guide the formulation of rural waste treatment and soil remediation strategies.


Assuntos
Metais Pesados , Microbiologia do Solo , Poluentes do Solo , Solo , Metais Pesados/análise , Metais Pesados/toxicidade , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , China , Solo/química , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/classificação , RNA Ribossômico 16S , Instalações de Eliminação de Resíduos , Monitoramento Ambiental , Proteobactérias , Actinobacteria/genética , Microbiota/efeitos dos fármacos , Chloroflexi/efeitos dos fármacos , Chloroflexi/genética
16.
J Biomed Res ; : 1-23, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38808552

RESUMO

Ferroptosis is an iron-mediated regulatory cell death pattern characterized by oxidative damage. The molecular regulating mechanisms are related to iron metabolism, lipid peroxidation, and glutathione metabolism. Additionally, some immunological signaling pathways, such as the cyclic GMP-AMP synthase-stimulator ofinterferon genes axis, Janus kinase-signal transducer and activator of transcription 1 axis, and transforming growth factor beta 1-Smad3 axis may also participate in the regulation of ferroptosis. Studies have shown that ferroptosis is closely related to many diseases such as cancer, neurodegenerative diseases, inflammatory diseases, and autoimmune diseases. Considering the pivotal role of ferroptosis-regulating signaling in the pathogenesis of diverse diseases, the development of ferroptosis inducers or inhibitors may have significant clinical potential for the treatment of the aforementioned conditions.

17.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38691444

RESUMO

Plant-associated microbiomes play important roles in plant health and productivity. However, despite fruits being directly linked to plant productivity, little is known about the microbiomes of fruits and their potential association with fruit health. Here, by integrating 16S rRNA gene, ITS high-throughput sequencing data, and microbiological culturable approaches, we reported that roots and fruits (pods) of peanut, a typical plant that bears fruits underground, recruit different bacterial and fungal communities independently of cropping conditions and that the incidence of pod disease under monocropping conditions is attributed to the depletion of Bacillus genus and enrichment of Aspergillus genus in geocarposphere. On this basis, we constructed a synthetic community (SynCom) consisting of three Bacillus strains from geocarposphere soil under rotation conditions with high culturable abundance. Comparative transcriptome, microbiome profiling, and plant phytohormone signaling analysis reveal that the SynCom exhibited more effective Aspergillus growth inhibition and pod disease control than individual strain, which was underpinned by a combination of molecular mechanisms related to fungal cell proliferation interference, mycotoxins biosynthesis impairment, and jasmonic acid-mediated plant immunity activation. Overall, our results reveal the filter effect of plant organs on the microbiome and that depletion of key protective microbial community promotes the fruit disease incidence.


Assuntos
Arachis , Frutas , Microbiota , Doenças das Plantas , Raízes de Plantas , RNA Ribossômico 16S , Microbiologia do Solo , Frutas/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , RNA Ribossômico 16S/genética , Raízes de Plantas/microbiologia , Arachis/microbiologia , Aspergillus/genética , Aspergillus/isolamento & purificação , Bacillus/genética , Bacillus/isolamento & purificação , Reguladores de Crescimento de Plantas/metabolismo , Fungos/genética , Fungos/classificação , Fungos/isolamento & purificação , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação
18.
J Immunol ; 212(11): 1609-1620, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38768409

RESUMO

In individuals diagnosed with AIDS, the primary method of sustained suppression of HIV-1 replication is antiretroviral therapy, which systematically increases CD4+ T cell levels and restores immune function. However, there is still a subset of 10-40% of people living with HIV who not only fail to reach normal CD4+ T cell counts but also experience severe immune dysfunction. These individuals are referred to as immunological nonresponders (INRs). INRs have a higher susceptibility to opportunistic infections and non-AIDS-related illnesses, resulting in increased morbidity and mortality rates. Therefore, it is crucial to gain new insights into the primary mechanisms of immune reconstitution failure to enable early and effective treatment for individuals at risk. This review provides an overview of the dynamics of key lymphocyte subpopulations, the main molecular mechanisms of INRs, clinical diagnosis, and intervention strategies during immune reconstitution failure, primarily from a multiomics perspective.


Assuntos
Infecções por HIV , HIV-1 , Reconstituição Imune , Humanos , HIV-1/imunologia , Infecções por HIV/imunologia , Infecções por HIV/tratamento farmacológico , Reconstituição Imune/imunologia , Subpopulações de Linfócitos/imunologia , Linfócitos T CD4-Positivos/imunologia
19.
Artigo em Inglês | MEDLINE | ID: mdl-38684027

RESUMO

Capillary force driven self-assembly micropillars (CFSA-MP) holds immense promise for the manipulation and capture of cells/tiny objects, which has great demands of wide size range and high robustness. Here, we propose a novel method to fabricate size-adjustable and highly robust CFSA-MP that can achieve wide size range and high stability to capture microspheres. First, we fabricate a microholes template with an adjustable aspect ratio using the spatial-temporal shaping femtosecond laser double-pulse Bessel beam-assisted chemical etching technique, and then the micropillars with adjustable aspect ratio are demolded by polydimethylsiloxane (PDMS). We fully demonstrated the advantages of the Bessel optical field by using the spatial-temporal shaping femtosecond laser double-pulse Bessel beams to broaden the height range of the micropillars, which in turn expands the size range of the captured microspheres, and finally achieving a wide range of capturing microspheres with a diameter of 5-410 µm. Based on the inverted mold technology, the PDMS micropillars have ultrahigh mechanical robustness, which greatly improves the durability. CFSA-MP has the ability to capture tiny objects with wide range and high stability, which indicates great potential applications in the fields of chemistry, biomedicine, and microfluidics.

20.
RSC Med Chem ; 15(4): 1096-1108, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38665824

RESUMO

Tumor cells hijack the programmed cell death protein-1 (PD-1)/programmed cell death ligand-1 (PD-L1) pathway to suppress the immune response through overexpressing PD-L1 to interact with PD-1 of T cells. With in-depth ongoing research, tumor-intrinsic PD-L1 is found to play important roles in tumor progression without interaction with PD-1 expressed on T cells, which provides an additional important target and therapeutic approach for development of PD-L1 inhibitors. Existing monoclonal antibody (mAb) drugs against the PD-1/PD-L1 pathway generally behave by conformationally blocking the interactions of PD-1 with PD-L1 on the cell surface. Beyond general inhibition of the protein-protein interaction (PPI), inhibitors targeting PD-L1 currently focus on the functional inhibition of the interaction between PD-1/PD-L1 and degradation of tumor-intrinsic PD-L1. This perspective will clarify the evolution of PD-L1 inhibitors and provide insights into the current development of PD-L1 inhibitors, especially targeting internalization and degradation of PD-L1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA