RESUMO
Background: It is challenging for clinicians to distinguish adrenocortical carcinoma (ACC) from benign adrenocortical adenomas (ACA) in their early stages. This study explored the value of serum steroid profiling as a complementary biomarker for malignancy diagnosis of ACC other than diameter and explored the influence of sex and functional status. Methods: In this retrospective study, a matched cohort of patients diagnosed with either ACC or ACA based on histopathology was meticulously paired in a 1:1 ratio according to sex, age, and functional status. Eight serum steroids including 11-deoxycortisol, 11-deoxycorticosterone, progesterone, androstenedione, dehydroepiandrosterone (DHEA), dehydroepiandrosterone sulfate (DHEAS), 17-hydroxyprogesterone, and estradiol, were quantified by liquid chromatography tandem mass spectrometry. We conducted a comparative analysis of the clinical characteristics and serum steroid profiles of patients with ACC and ACA, with further subgroup analysis. Results: The study included 31 patients with ACC and 31 matched patients with ACA. Patients with ACC exhibited significantly larger tumor diameters, lower body mass index (BMI), and higher levels of 11-deoxycortisol, progesterone, and androstenedione than those with ACA. 11-deoxycortisol was the only valuable index for discriminating ACC from ACA, regardless of functional status and sex. Progesterone, DHEA, and DHEAS levels were higher in the functional ACC group than in the non-functional ACC group. Female ACC patients, especially in postmenopausal female exhibited higher levels of androstenedione than male patients. The area under the curve of tumor diameter, 11-deoxycortisol, and BMI was 0.947 (95% CI 0.889-1.000), with a sensitivity of 96.8% and specificity of 90.3%. Conclusion: Serum steroid profiling serves as a helpful discriminative marker for ACC and ACA, with 11-deoxycortisol being the most valuable marker. For other steroid hormones, consideration of sex differences and functional status is crucial.
Assuntos
Neoplasias do Córtex Suprarrenal , Adenoma Adrenocortical , Carcinoma Adrenocortical , Humanos , Masculino , Feminino , Neoplasias do Córtex Suprarrenal/sangue , Neoplasias do Córtex Suprarrenal/diagnóstico , Neoplasias do Córtex Suprarrenal/patologia , Carcinoma Adrenocortical/sangue , Carcinoma Adrenocortical/diagnóstico , Pessoa de Meia-Idade , Estudos Retrospectivos , Adenoma Adrenocortical/sangue , Adenoma Adrenocortical/diagnóstico , Adenoma Adrenocortical/patologia , Adulto , Esteroides/sangue , Diagnóstico Diferencial , Idoso , Biomarcadores Tumorais/sangue , Fatores SexuaisRESUMO
Amorphophallus muelleri is an Araceae plant with perennial tuber, widely used in food, pharmaceutical and chemical industry due to its richness in glucomannan. In April 2022, an outbreak of a target spot on A. muelleri plantlets was observed in a nursery in Ruili, Yunnan, China. The leafstalks of the diseased plantlets in the nursery turned brown and decayed (Fig.1 A-B), then gradually some water-soaked spots on the true leaves developed along the veins (Fig.1 A). Subquencely, the spots on the true leaves turned dark green to white-grayish in the center, which formed light to dark brown concentric rings with a target-like appearance surrounded by a yellow halo (Fig.1 C). When the temperature was 20-34â and the relatively humidity was 25-80%, dark-green to black sporodochia with white hypha appeared on the lower and upper leaf surfaces. Finally, 5-8% of the plants surveyed on 800 m2 of one-year-old plantlets in the nursery showed the symptoms and some plants with infected leafstalks would be death. Similar symptoms were also observed on about 10% of the transplanted plants surveyed on 12000 m2 (1.2 ha) of two-year-old plantlets in the field. Five diseased leaves from five distinct plantlets in the nursery were collected for pathogen isolation. Leaf pieces(5 x 5 mm) were cut from the edge of necrotic lesions, and surface-sterilized with 2.5% sodium hypochlorite for 1 min, 75% ethanol for 30 s, then rinsed 5 times by sterilized distilled water, finally put the leaf pieces on sterilized filter paper for 3-5 minutes to dry them and transferred onto potato dextrose agar (PDA) in petri dishes at 25â for three days. Five pure cultures identical to colony and conidial characteristics were isolated from five individual plants. The representative pure culture (M1) was grayish-white and circular colonies were 7.50 cm in diamter after 15 days at 25â, with dark green concentric rings of sporodochia, the dorsal view of the colonies were yellowish. Conidia were aseptate, smooth, cylindrical, 5.00-6.25 (5.71) x 1.25-1.67 (1.63) µm (n = 20) rounded at both ends. A spore suspension (1 x 106 spores/ml) was prepared by harvesting spores from 15-day-old cultures grown in the dark at 25â, then a thirty-ml of spore suspension was sprayed on the healthy leaves of 10 two-year-old plantlets. Thirty-ml of sterile water was sprayed on the healthy leaves of another 10 seedlings and used as the control. All seedlings were placed in a nursery at 20 to 34â and a relative humidity of 25 to 80%. Similar symptoms (Fig.1 D-F) to those observed in the nursery and field developed on all the 10 seedlings inoculated with M1 after two days, but not on the control leaves. The pathogenicity tests were repeated for three times. Fungal cultures reisolated from the infected leaves were identical to the original colonies and conidia, completing Koch's postulates. The internal transcribed spacer (ITS, primers ITS1 and ITS4) region of ribosomal DNA (OQ553785), calmodulin (cmdA, primers CAL-228F and CAL2Rd)(OQ559103), RNA polymerase II second largest subunit (rpb2, primers RPB2-5F2 and RPB2-7cR) (OQ559104) and ß-tubulin (tub2, primers Bt2a and Bt2b) (OQ559105) of M1 had 100%, 98.52%, 98.98% and 98.98% identity with the sequences of Paramyrothecium breviseta CBS544.75 (KU846289 for ITS, KU846262 for cmdA, KU846351 for rpb2, and KU846406 for tub2), respectively. In the phylogenic tree based on ITS, cmdA, rpb2 and tub2 gene sequences, the pure culture M1 clustered with P. breviseta CBS544.75, SDBR-CMU387, DRL4 and DRL3, which has been reported as the pathogen of leaf spot of Coffea arabica in China, C. canephora in China and Thailand (Wu et al. 2021; Withee et al. 2022). Molecular and morphological observations showed the pure culture M1 were P. breviseta (Withee et al. 2022), in addition the disease was named as target spot dueing to the typical target symptom on the leaves. To our knowledge, this is the first report of P. breviseta on A. muelleri from Yunnan, China, as well as worldwide. This disease can caused serious economic losses of A. muelleri dueing to that it can result 5-8% death of the plants in the nursery.
RESUMO
BACKGROUND: Portal hypertension combined with esophagogastric variceal bleeding (EGVB) is a serious complication in patients with hepatitis B virus (HBV)-related cirrhosis in China. Splenectomy plus pericardial devascularization (SPD) and transjugular intrahepatic portosystemic shunt (TIPS) are effective treatments for EGVB. However, a comparison of the effectiveness and safety of those methods is lacking. AIM: To compare the prognosis after SPD vs TIPS for acute EGVB after failure of endoscopic therapy or secondary prophylaxis of variceal rebleeding (VRB) in patients with HBV-related cirrhosis combined with portal hypertension. METHODS: This retrospective cohort study included 318 patients with HBV-related cirrhosis and EGVB who underwent SPD or TIPS at West China Hospital of Sichuan University during 2009-2013. Propensity score-matched analysis (PSM), the Kaplan-Meier method, and multivariate Cox regression analysis were used to compare overall survival, VRB rate, liver function abnormality rate, and hepatocellular carcinoma (HCC) incidence between the two patient groups. RESULTS: The median age was 45.0 years (n = 318; 226 (71.1%) males). During a median follow-up duration of 43.0 mo, 18 (11.1%) and 33 (21.2%) patients died in the SPD and TIPS groups, respectively. After PSM, SPD was significantly associated with better overall survival (OS) (P = 0.01), lower rates of abnormal liver function (P < 0.001), and a lower incidence of HCC (P = 0.02) than TIPS. The VRB rate did not differ significantly between the two groups (P = 0.09). CONCLUSION: Compared with TIPS, SPD is associated with higher postoperative OS rates, lower rates of abnormal liver function and HCC, and better quality of survival as acute EGVB treatment after failed endoscopic therapy or as secondary prophylaxis of VRB in patients with HBV-related cirrhosis combined with portal hypertension. There is no significant between-group difference in VRB rates.
RESUMO
Vibrio parahaemolyticus is a marine pathogen thought to be the leading cause of seafood-borne gastroenteritis globally, urgently requiring efficient management methods. V. parahaemolyticus encodes 12 resistance/nodulation/division (RND) efflux systems. However, research on these systems is still in its infancy. In this study, we discovered that the inactivation of VmeL, a membrane fusion protein within the RND efflux systems, led to reduction of the ability of biofilm formation. Further results displayed that the decreased capacity of Congo red binding and the colony of ΔvmeL is more translucent compared with wild type strains, suggested reduced biofilm formation due to decreased production of biofilm exopolysaccharide upon vmeL deletion. In addition, the deletion of vmeL abolished surface swarming and swimming motility of V. parahaemolyticus. Additionally, deletion of vmeL weakened the cytotoxicity of V. parahaemolyticus towards HeLa cells, and impaired its virulence in a murine intraperitoneal infection assay. Finally, through RNA-sequencing, we ascertained that there were 716 upregulated genes and 247 downregulated genes in ΔvmeL strain. KEGG enrichment analysis revealed that quorum sensing, bacterial secretion systems, ATP-binding cassette transporters, and various amino acid metabolism pathways were altered due to the inactivation of vmeL. qRT-PCR further confirmed that genes accountable to the type III secretion system (T3SS1) and lateral flagella were negatively affected by vmeL deletion. Taken together, our results suggest that VmeL plays an important role in pathogenicity, making it a good target for managing infection with V. parahaemolyticus.
RESUMO
Abscisic acid (ABA) hydroxylation is an important pathway for ABA inactivation and homeostasis maintenance. Here, we discover a new downstream catabolite of neophaseic acid (neoPA) in the ABA 9'-hydroxyl pathway and identify it as epi-neodihydrophaseic acid (epi-neoDPA) by comparing its accurate mass, retention time, and MSn spectra with those of our chemically synthesized epi-neoDPA. Analyses of Arabidopsis seed germination and ABA-related gene expression reveal that neoPA rather than epi-neoDPA possesses ABA-like hormonal activity. In vitro enzyme activity tests of prokaryotic recombinant protein reveal that NeoPAR1 (neoPA reductase 1) identified from Arabidopsis converts neoPA into epi-neoDPA. Site-directed mutation at Tyr163 in the conserved motif of NeoPAR1 abolishes the catalytic activity of NeoPAR1. Accelerated seed germination was observed in NeoPAR1 knockdown and knockout mutants, whereas retarded seed germination and the accumulation of epi-neoDPA and ABA were observed in NeoPAR1 overexpression lines, suggesting that NeoPAR1 is involved in seed germination and maintenance of ABA homeostasis.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação/genética , Hidroxilação , Sementes/genéticaRESUMO
The gestational weight gain (GWG) range of Chinese women with gestational diabetes mellitus (GDM) remains unclear. Our objective was to identify the ranges of GWG in Chinese women with GDM and to investigate the associations between prepregnancy body mass index (BMI), GWG and maternal-infant adverse outcomes. Cases of GDM women who delivered singletons from 2013 to 2018 in a public hospital were collected. Logistic regression analysis was used to assess the joint effects of prepregnancy BMI and GWG on maternal-infant adverse outcomes. Ultimately, 14,578 women were collected. The ranges of GWG in Chinese women with GDM were different from the National Academy of Medicine's (NAM) recommendation. The ranges of GWG of Chinese women with GDM in the underweight, normal weight, overweight and obese groups were 5.95-21.95 kg, 4.23-21.83 kg, 0.88-21.12 kg and - 1.76 to 19.95 kg, respectively. The risks of large for gestational age (LGA), macrosomia and caesarean delivery were significantly increased with the increasing prepregnancy BMI. Furthermore, the risks of LGA, macrosomia and caesarean delivery were significantly higher in the normal weight group with a GWG higher than the NAM recommendation. Similarly, in the overweight group with a GWG higher than the NAM recommendation, the risks of LGA were significantly higher, while the risks of macrosomia were significantly lower. Overall, we determined the range of GWG in different prepregnancy BMI groups. And GDM women with high prepregnancy BMI and excessive GWG were associated with the higher risks of maternal-infants adverse outcomes in China.
Assuntos
Macrossomia Fetal/epidemiologia , Ganho de Peso na Gestação , Obesidade/epidemiologia , Resultado da Gravidez , Povo Asiático , China/epidemiologia , Feminino , Humanos , Recém-Nascido , GravidezRESUMO
OBJECTIVE: Circular RNAs (circRNAs) involve in the development and progression of tumour. The mechanism of circRNAs in oral squamous cell carcinoma (OSCC) has remained unclear. This study aimed to investigate the role of circular Yes-associated protein (circYap) in OSCC. METHODS: Quantification reverse transcription-polymerase chain reaction (qRT-PCR) was applied to measure circYap expression in patients with OSCC tissues and cells. Flow cytometry was performed to evaluate cell cycle. circYap interaction with CDK4 was detected by RNA immunoprecipitation (RIP) and RNA pull-down. The interaction of Cyclin D1 and CDK4 was determined using co-immunoprecipitation (co-IP). RESULTS: We showed that circYap expression was downregulated in OSCC tissues. Using small interfering circular (Si-circYap) and overexpression plasmid, we found that circYap overexpression inhibited proliferation and arrested cell cycle in OSCC cells, while, circYap knockdown yielded the opposite result. Cyclin D1/CDK4 complexes and nuclear translocation is essential for cell cycle progression. We found that CDK4 interacted with circYap was increased when circYap overexpression, meanwhile, Cyclin D1/CDK4 complexes and of nuclear distribution were decreased. CONCLUSIONS: Our findings suggest that circYap impedes progression of OSCC. Overexpression of circYap suppresses proliferation and cell cycle through binding to CDK4 to block formation and nuclear translocation of Cyclin D1/CDK4 complexes. Thus, circYap may serves as a valuable therapeutic target for OSCC.
Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Carcinoma de Células Escamosas/genética , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Neoplasias Bucais/genética , Carcinoma de Células Escamosas de Cabeça e PescoçoRESUMO
Sishen Pill (SSP) is a classical prescription of traditional Chinese medicine and often used to treat gastrointestinal diseases, including ulcerative colitis (UC). However, its mechanism is still unclear. We aimed to determine the mechanism of SSP in the treatment of UC by investigating if it maintains the integrity of the intestinal mucosal barrier via the Rho A/Rho kinase (ROCK) signaling pathway. Administration of 2,4,6-trinitrobenzene sulfonic acid (TNBS) successfully induced chronic UC in rats, while the treatment effect of SSP was evaluated by body weight change, colonic length, colonic weight, colonic weight index, histological injury score, and pathological injury score after colitis rats were treated for 7 days. TNF-α and IL-1ß levels were analyzed by ELISA, and the proteins of PI3K/Akt and RhoA/ROCK signaling pathway and junction proteins expression were measured by western blotting assay, and the distribution of Claudin 5 was shown by immunofluorescence. SSP significantly improved the clinical symptoms of colitis in rats and reduced the expression of p-RhoA, ROCK1, PI3K, and Akt in the colon mucosa, while it increased the expression of p-Rac and related proteins (Claudin-5, JAM1, VE-cadherin, and Connexin 43). In addition, SSP increased p-AMPKα and PTEN proteins expression, decreased Notch1 level, and hinted that activation of the PI3K/Akt signaling pathway was inhibited. In conclusion, SSP effectively treated chronic colitis induced by TNBS, which may have been achieved by inhibiting PI3K/Akt signal to suppress activation of the Rho/ROCK signaling pathway to finally maintain the integrity of the intestinal mucosal barrier.
RESUMO
BACKGROUND: Probiotic supplements may be seen as a promising way to improve glucose metabolism. This study aimed to evaluate the effects of probiotic supplements on blood glucose, insulin resistance/sensitivity, and prevention of gestational diabetes mellitus (GDM) among pregnant women. METHODS: Eleven electronic databases were searched from inception to May 2020. Two authors independently identified randomized controlled trials (RCTs), assessed the eligibility and quality of the included studies, and then extracted data. The primary outcomes were fasting plasma glucose (FPG), 1 h and 2 h plasma glucose after 75 g oral glucose tolerance test (OGTT), HbA1c, fasting plasma insulin, insulin resistance, and insulin sensitivity. Fixed and random effect models were used to pool the results. RESULTS: A total of 20 RCTs involving 2972 participants were included according to the inclusion and exclusion criteria. The pooled results of this research showed that probiotic supplements could reduce the level of FPG (mean difference (MD) = -0.11; 95% CI = -0.15 to -0.04; P=0.0007), serum insulin (MD = -1.68; 95% CI = -2.44 to -0.92; P < 0.00001), insulin resistance (MD = -0.36; 95% CI = -0.53 to -0.20; P < 0.00001), and insulin sensitivity (MD = -21.80; 95% CI = -31.92 to -11.67; P < 0.00001). Regarding the subgroup analysis of different pregnant women, the effects of probiotics on FPG, insulin, and insulin resistance were more obvious among GDM and healthy women than among overweight/obese women. Furthermore, the differences were not significant in HbA1c (MD = -0.05; 95% CI = -0.12 to 0.03; P=0.23), 1 h OGTT (MD = -0.07; 95% CI = -0.25 to 0.10; P=0.42), and 2 h OGTT (MD = -0.03; 95% CI = -0.17 to 0.12; P=0.72). CONCLUSION: This review found that probiotic supplements had certain functions to reduce the level of FPG and improve insulin, insulin resistance, and insulin sensitivity, especially for GDM and healthy pregnant women.
RESUMO
BACKGROUND: Clinically, the traditional Chinese medicine compound Gujiansan has been widely used in the treatment of steroid-induced avascular necrosis of the femoral head (SANFH). The present study aimed to investigate the mechanisms underlying the therapeutic effect of Gujiansan. METHODS: A rat model of SANFH was established by the injection of dexamethasone (DEX) at a high dosage of 25 mg/kg/d. Then, Gujiansan was intragastrically administered for 2 weeks, 4 weeks, and 8 weeks, and histological examination of the femoral head was performed. The expression levels of related mRNAs and proteins were analyzed by qRT-PCR, Western blotting, and immunohistochemistry, and the levels of bone biochemical markers and cytokines were detected with ELISA kits. RESULTS: Gujiansan administration ameliorated SANFH and induced the expression of hypoxia-inducible factor-1α (HIF-1α), Bcl-2/adenovirus E1B 19 kDa interacting protein 3 (BNIP3), LC3, and Beclin-1 in the rat model in a dose- and time-dependent manner, and Gujiansan promoted osteocalcin secretion at the femoral head. In addition, Gujiansan increased the levels of bone formation- and bone resorption-specific markers (osteocalcin (OC), bone-specific alkaline phosphatase (BAP), tartrate resistant acid phosphatase-5b (TRACP-5b), N-terminal telopeptides of type I collagen (NTX-1), and C-terminal telopeptide of type I collagen (CTX-1)) and decreased the levels of proinflammatory cytokines (TNF-α, IL-6, and CRP) in a dose- and time-dependent manner. CONCLUSIONS: Gujiansan accelerates the formation of a new bone, promotes the absorption of the damaged bone, inhibits the inflammatory response, induces autophagy of the femoral head via the HIF-1α/BNIP3 pathway, and ultimately ameliorates SANFH.
RESUMO
Gibberellins (GAs) play crucial roles in plant growth and development, and their regulatory functions rely on complex metabolic networks and signaling pathways. Therefore, the exploration of GAs metabolic network is of great importance. However, limited GAs have been found in given plant species, which makes it difficult to comprehensively study the GAs metabolic network. Herein, a structure-guided strategy for GAs screening based on liquid chromatography-mass spectrometry analysis assisted by chemical isotope labeling (CIL-LC-MS) was developed. In the proposed strategy, N,N-dimethyl ethylenediamine (DMED) and its isotopologue d4-DMED were used to label GAs. In light of the characteristic fragmentation patterns exhibited by the labeled GAs, four principles were summarized to screen the potential GAs from plant tissues. Subsequently, the MS/MS fragmentation behavior and quantitative structure-retention relationship (QSRR) model were employed to assist in deciphering structures of GA candidates. With this strategy, thirty potential GAs were screened out and identified from five plant species. Seven of them were confirmed by the authentic standards. Twenty-two of them have not been reported before in the five plant species used in this study, including thirteen that have been reported in other plant species and nine that have never been reported in any plant species. Noteworthily, a total of nine potential GAs were speculated to be novel 16, 17-double hydrated GAs, which indicated that the 16, 17-double hydration may be a ubiquitous metabolic pathway of GAs in plants. This study was the first attempt to establish a structure-guided screening strategy for GAs. Our findings have enriched the GA species in plants and expanded the GAs family, which may be helpful for study of the metabolic pathway and physiological function of GAs.
Assuntos
Giberelinas , Espectrometria de Massas em Tandem , Cromatografia Líquida , Marcação por IsótopoRESUMO
Background: Gestational diabetes mellitus (GDM) may be associated with delayed onset of lactogenesis (DOL), but it is still inconclusive. Objectives: The study aimed to evaluate the association between GDM and DOL, the prevalence and risk factors of DOL in GDM women. Materials and Methods: A comprehensive search was performed in 10 electronic databases from inception to June 1, 2020. To find more eligible studies, the references of finally eligible studies and relevant reviews were traced manually. A meta-analysis was conducted to calculate the pooled estimates of association, prevalence, and risk factors using random- or fixed-effects models. Results: Eleven eligible articles involving 8,150 women were included in this study. GDM women had a higher risk of DOL (odds ratio [OR] = 1.84, 95% confidence interval [CI] [1.34-2.52]). The prevalence of delayed lactogenesis onset in GDM women was 35.0% (effect size [ES] = 0.35, 95% CI [0.30-0.40]). Primipara (OR = 2.54, 95% CI [1.89-3.42]), advanced age (OR = 1.05, 95% CI [1.03-1.08]), prepregnancy obesity (OR = 1.55, 95% CI [1.19-2.03]), and insulin treatment (OR = 3.07, 95% CI [1.71-5.47]) were risk factors of delayed lactogenesis onset in GDM women. Conclusion: GDM negatively affects the timing of lactogenesis onset. The prevalence of delayed lactogenesis onset in GDM women is 35.0%. Primipara, advanced age, prepregnancy obesity, and insulin treatment are independent risk factors of delayed lactogenesis onset in GDM women.
Assuntos
Diabetes Gestacional , Aleitamento Materno , Diabetes Gestacional/epidemiologia , Feminino , Humanos , Obesidade/complicações , Obesidade/epidemiologia , Gravidez , Prevalência , Fatores de RiscoRESUMO
ABSTRACT: The platelet-albumin-bilirubin (PALBI) grade plays critical role in evaluating liver function. However, the change of PALBI grade from the preoperative to postoperative period in predicting patient outcomes after hepatectomy remains unclear.A total of 489 HCC patients who underwent hepatectomy in West China Hospital between January, 2010 and June, 2016 were analyzed retrospectively.ΔPALBI grade was calculated by PALBI grade at the first postoperative month - preoperative PALBI grade.ΔPALBI >0 was considered as stable; otherwise, worse PALBI grade was considered. Kaplan- Meier method and Cox proportional hazard regression analyses were performed for survival analysis. Prognostic model was constructed by nomogram method.Three hundred forty two patients and 147 patients were classified into training group and validation group, respectively. In the training group, results from Cox model suggested that worse PALBI grade (HR 1.328, 95% CI 1.010-1.746, Pâ=â.042), tumor size (HR 1.460, 95% CI 1.058-2.015, Pâ=â.021), microvascular invasion (MVI, HR 1.802, 95% CI 1.205-2.695, Pâ<â.001), and high alpha-fetoprotein level (AFP, HR 1.364, 95% CI 1.044-1.781, Pâ=â.023) negatively influenced postoperative recurrence. Similarly, worse PALBI grade (HR 1.403, 95% CI 1.020-1.930, Pâ=â.038), tumor size (HR 1.708, 95% CI 1.157-2.520, Pâ=â.007), MVI (HR 1.914, 95% CI 1.375-2.663, Pâ<â.001), and presence of cirrhosis (HR 1.773, 95% CI 1.226-2.564, Pâ=â.002) had negatively impacts on overall survival. Patients with worse PALBI grade had worse recurrence free (RFS) and overall survival (OS). The prognostic model incorporating the change of PALBI grade constructed in training group and tested in the validation group could perform well in predicting the outcomes.Postoperative change of PALBI grade was independently risk factor related with prognosis. Prognostic model incorporating the change of PALBI grade might be a useful index to predict the prognosis of HCC patients following hepatectomy.
Assuntos
Bilirrubina/sangue , Carcinoma Hepatocelular/sangue , Hepatectomia/mortalidade , Testes de Função Hepática/métodos , Neoplasias Hepáticas/sangue , Contagem de Plaquetas , Albumina Sérica/análise , Adulto , Idoso , Biomarcadores Tumorais , Plaquetas , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/cirurgia , Feminino , Humanos , Estimativa de Kaplan-Meier , Cirrose Hepática/sangue , Cirrose Hepática/etiologia , Cirrose Hepática/mortalidade , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/cirurgia , Masculino , Pessoa de Meia-Idade , Nomogramas , Período Pós-Operatório , Valor Preditivo dos Testes , Período Pré-Operatório , Prognóstico , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Índice de Gravidade de Doença , Análise de SobrevidaRESUMO
Sonic hedgehog medulloblastoma encompasses a clinically and molecularly diverse group of cancers of the developing central nervous system. Here, we use unbiased sequencing of the transcriptome across a large cohort of 250 tumors to reveal differences among molecular subtypes of the disease, and demonstrate the previously unappreciated importance of non-coding RNA transcripts. We identify alterations within the cAMP dependent pathway (GNAS, PRKAR1A) which converge on GLI2 activity and show that 18% of tumors have a genetic event that directly targets the abundance and/or stability of MYCN. Furthermore, we discover an extensive network of fusions in focally amplified regions encompassing GLI2, and several loss-of-function fusions in tumor suppressor genes PTCH1, SUFU and NCOR1. Molecular convergence on a subset of genes by nucleotide variants, copy number aberrations, and gene fusions highlight the key roles of specific pathways in the pathogenesis of Sonic hedgehog medulloblastoma and open up opportunities for therapeutic intervention.
Assuntos
Neoplasias Cerebelares/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Hedgehog/genética , Meduloblastoma/genética , Transcriptoma , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Redes Reguladoras de Genes , Variação Genética , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Transdução de Sinais/genética , Adulto JovemRESUMO
Icariin is commonly used for the clinical treatment of osteonecrosis of the femoral head (ONFH). miR-23a-3p plays a vital role in regulating the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). The present study aimed to investigate the roles of icariin and miR-23a-3p in the osteogenic differentiation of BMSCs and an ONFH model. BMSCs were isolated and cultured in vitro using icariin-containing serum at various concentrations, and BMSCs were also transfected with a miR-23a inhibitor. The alkaline phosphatase (ALP) activity and cell viability as well as BMP-2/Smad5/Runx2 and WNT/ß-catenin pathway-related mRNA and protein expression were measured in BMSCs. Additionally, a dual-luciferase reporter assay and pathway inhibitors were used to verify the relationship of icariin treatment/miR-23a and the above pathways. An ONFH rat model was established in vivo, and a 28-day gavage treatment and lentivirus transfection of miR-23a-3p inhibitor were performed. Then, bone biochemical markers (ELISA kits) in serum, femoral head (HE staining and Digital Radiography, DR) and the above pathway-related proteins were detected. Our results revealed that icariin treatment/miR-23a knockdown promoted BMSC viability and osteogenic differentiation as well as increased the mRNA and protein expression of BMP-2, BMP-4, Runx2, p-Smad5, Wnt1 and ß-catenin in BMSCs and ONFH model rats. In addition, icariin treatment/miR-23a knockdown increased bone biochemical markers (ACP-5, BAP, NTXI, CTXI and OC) and improved ONFH in ONFH model rats. In addition, a dual-luciferase reporter assay verified that Runx2 was a direct target of miR-23a-3p. These data indicated that icariin promotes BMSC viability and osteogenic differentiation as well as improves ONFH by decreasing miR-23a-3p levels and regulating the BMP-2/Smad5/Runx2 and WNT/ß-catenin pathways.
RESUMO
Vascular smooth muscle cell (VSMC) senescence is a major driver of neointimal formation. We have demonstrated that circ-Sirt1 derived from the SIRT1 gene suppressed VSMC inflammation and neointimal formation. However, the effect of circ-Sirt1 inhibiting inflammation on VSMC senescence during neointimal hyperplasia remains to be elucidated. Here, we showed that circ-Sirt1 was highly expressed in young and healthy arteries, which was decreased in aged arteries and neointima of humans and mice. Overexpression of circ-Sirt1 delayed Ang II-induced VSMC senescence in vitro and ameliorated neointimal hyperplasia in vivo. Mechanically, circ-Sirt1 inhibited p53 activity at the levels of transcription and post-translation modulation. In detail, circ-Sirt1, on the one hand, interacted with and held p53 to block its nuclear translocation, and on the other hand, promoted SIRT1-mediated p53 deacetylation and inactivation. In conclusion, our data suggest that circ-Sirt1 is a novel p53 repressor in response senescence-inducing stimuli, and targeting circ-Sirt1 may be a promising approach to ameliorating aging-related vascular disease.
RESUMO
In recent years, deep neural networks have begun to receive much attention, which has obvious advantages in feature extraction and modeling. However, in the using of deep neural networks for the QSAR modeling process, the selection of various parameters (number of neurons, hidden layers, transfer functions, data set partitioning, number of iterations, etc.) becomes difficult. Thus, we proposed a new and easy method for optimizing the model and selecting Deep Neural Networks (DNN) parameters through uniform design ideas and orthogonal design methods. By using this approach, 222 chloroquine (CQ) derivatives with half maximal inhibitory concentration values reported in different kinds of literature were selected to establish DNN models and a total number of 128,000 DNN models were built to determine the optimized parameters for selecting the better models. Comparing with linear and Artificial Neural Network (ANN) models, we found that DNN models showed better performance.Communicated by Ramaswamy H. Sarma.
Assuntos
Cloroquina , Redes Neurais de Computação , Cloroquina/farmacologiaRESUMO
Background: Coronavirus disease 2019 (COVID-19) is a serious and even lethal respiratory illness. The mortality of critically ill patients with COVID-19, especially short term mortality, is considerable. It is crucial and urgent to develop risk models that can predict the mortality risks of patients with COVID-19 at an early stage, which is helpful to guide clinicians in making appropriate decisions and optimizing the allocation of hospital resoureces. Methods: In this retrospective observational study, we enrolled 949 adult patients with laboratory-confirmed COVID-19 admitted to Tongji Hospital in Wuhan between January 28 and February 12, 2020. Demographic, clinical and laboratory data were collected and analyzed. A multivariable Cox proportional hazard regression analysis was performed to calculate hazard ratios and 95% confidence interval for assessing the risk factors for 30-day mortality. Results: The 30-day mortality was 11.8% (112 of 949 patients). Forty-nine point nine percent (474) patients had one or more comorbidities, with hypertension being the most common (359 [37.8%] patients), followed by diabetes (169 [17.8%] patients) and coronary heart disease (89 [9.4%] patients). Age above 50âyears, respiratory rate above 30 beats per minute, white blood cell count of more than10â×â109/L, neutrophil count of more than 7â×â109/L, lymphocyte count of less than 0.8â×â109/L, platelet count of less than 100â×â109/L, lactate dehydrogenase of more than 400âU/L and high-sensitivity C-reactive protein of more than 50âmg/L were independent risk factors associated with 30-day mortality in patients with COVID-19. A predictive CAPRL score was proposed integrating independent risk factors. The 30-day mortality were 0% (0 of 156), 1.8% (8 of 434), 12.9% (26 of 201), 43.0% (55 of 128), and 76.7% (23 of 30) for patients with 0, 1, 2, 3, ≥4 points, respectively. Conclusions: We designed an easy-to-use clinically predictive tool for assessing 30-day mortality risk of COVID-19. It can accurately stratify hospitalized patients with COVID-19 into relevant risk categories and could provide guidance to make further clinical decisions.
RESUMO
We study the motion morphology, distance, and velocity of plasma and laser-induced shock waves induced by a millisecond-nanosecond (ms-ns) combined-pulse laser with different pulse delays on silicon. The laser shadowgraph method is used, and the phenomenon of double laser-induced shock waves has been found while the pulse delay is 1.2-1.8 ms. The controlling variable method is used to study this phenomenon, and it is found that it is mainly related to the ignition of the laser-supported absorption wave induced by the ms laser. Moreover, the plasma expansion velocity increases with the increase of pulse delay, the axial propagation distance of laser-induced shock waves increases monotonically with pulse delay, and the velocity of laser-induced shock waves decreases with the increase of pulse delay.
RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: As a classic prescription and commercial Chinese patent medicine, Zuojin Pill (ZJP) has been used to treat ulcerative colitis (UC) effectively for many years. However, its mechanism of action remains unclear. AIM OF THE STUDY: METHODS: Mice with dextran-sulfate-sodium-induced colitis were treated with ZJP for 7 d. In the present study, the therapeutic effect of ZJP was evaluated by macroscopic and microscopic observation; regulatory T (Treg) cells and their subsets were analyzed by flow cytometry; and the composition of gut microbiota was tested by 16S rRNA analysis. Activation of the phosphoinostide 3-kinase (PI3K)/Akt signaling pathway was observed by western blotting. RESULTS: The pathological damage was attenuated and expression of proinflammatory cytokines was decreased. While the diversity of intestinal microflora was regulated, the relative abundance of Actinobacteria, and Sphingobacteriia was modified. Meanwhile, the level of CD4+CD25+Foxp3+ and PD-L1+ Treg cells improved. These changes maintained a positive correlation which was analyzed statistically. Our results also showed that ZJP inhibited activation of the PI3K/Akt signaling pathway. CONCLUSIONS: ZJP regulates crosstalk between intestinal microflora and Treg cells to attenuate experimental colitis via the PI3K/Akt signaling pathway.