Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(9): 4628-4636, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38357835

RESUMO

Hydrogel-based solar vapour generators (SVGs) are promising for wastewater treatment and desalination. The performance of SVG systems is governed by solar thermal conversion and water management. Progress has been made in achieving high energy conversion efficiency, but the water evaporation rates are still unsatisfactory under 1 sun irradiation. This study introduced novel two-dimensional (2D) boron nanosheets as additives into hydrogel-based SVGs. The resulting SVGs exhibit an outstanding evaporation rate of 4.03 kg m-2 h-1 under 1 sun irradiation. This significant improvement is attributed to the 2D boron nanosheets, which leads to the formation of a higher content of intermediate water and reduced water evaporation enthalpy to 845.11 kJ kg-1. The SVGs into which boron nanosheets were incorporated also showed high salt resistance and durability, demonstrating their great potential for desalination applications.

2.
ChemSusChem ; 17(11): e202301905, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38268017

RESUMO

Atmospheric water harvesting (AWH) is considered one of the promising technologies to alleviate the uneven-distribution of water resources and water scarcity in arid regions of the world. Hydrogel-based AWH materials are currently attracting increasing attention due to their low cost, high energy efficiency and simple preparation. However, there is a knowledge gap in the screening of hydrogel-based AWH materials in terms of structure-property relationships, which may increase the cost of trial and error in research and fabrication. In this study, we synthesised a variety of hydrogel-based AWH materials, characterized their physochemcial properties visualized the electrostatic potential of polymer chains, and ultimately established the structure-property-application relationships of polymeric AWH materials. Poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPS) hydrogel is able to achieve an excellent water adsorption capacity of 0.62 g g-1 and a high water desorption efficiency of more than 90 % in relatively low-moderate humidity environments, which is regarded as one of the polymer materials with potential for future AWH applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA