Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Foods ; 13(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38672857

RESUMO

Auricularia cornea var. Li., as an edible mushroom rich in various nutrients, could be widely used in noodle food. This study aimed to investigate the effect of Auricularia cornea var. Li. (AU) powder on the gel properties, structure and quality of starch noodles. Taking the sample without adding AU powder as a control, the addition of AU powder enhanced the peak viscosity, trough viscosity, final viscosity, breakdown, setback, peak time, gelatinization temperature, G' (storage modulus) and G'' (loss modulus). Meanwhile, the incorporation of AU powder significantly enhanced the stability of the starch gel structure and contributed to a more ordered microstructure also promoting the short-term aging of starch paste. In vitro digestion results displayed lower rapid digestibility (21.68%) but higher resistant starch content (26.58%) with the addition of AU powder and increased breaking rate, cooking loss, swelling index and a* and b* values. However, it decreased dry matter content and L*, particularly the reducing sugar content significantly increased to 4.01% (p < 0.05), and the total amino acid content rose to 349.91 mg/g. The GC-IMS library identified 51 VOCs, and the OPLS-DA model classified 18 VOCs (VIP > 1). Overall, the findings indicate that starch noodles with the addition of AU powder may provide greater nutritional quality, gel stability and starch antidigestibility.

2.
Foods ; 13(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38472828

RESUMO

Foods containing tea could be widely utilized due to the addition of good tea ingredients, especially large-leaf yellow tea, which is rich with a good flavor. Applying this change to bread containing tea would improve its product quality. In this research, large-leaf yellow tea bread (LYB), possessing a special flavor, was developed using ultrafine large-leaf yellow tea powder and flour as the main raw materials. The amount of ultrafine large-leaf yellow tea powder added to bread was optimized using texture, sensation, and specific volume as comprehensive evaluation indicators. At the optimal dosage, the free amino acids, volatile flavor compounds, antioxidant activity, and in vitro starch digestibility of LYB were measured. Response surface optimization experimental results showed that the comprehensive score of bread was highest when the added amount of ultrafine large-leaf yellow tea powder was 3%. In particular, compared to blank bread (BB), adding ultrafine large-leaf yellow tea powder into bread could effectively increase its amino acid composition, enhance its volatile flavor compounds, improve the antioxidant capacity, and reduce the digestibility of starch.

3.
Foods ; 12(22)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-38002151

RESUMO

Rice plants are highly sensitive to high-temperature stress, posing challenges to grain yield and quality. However, the impact of high temperatures on the quality of high-quality hybrid rice during the booting stage, as well as the differing effects of the booting and grain-filling stages on grain quality, are currently not well-known. Therefore, four high-quality hybrid rice were subjected to control (CK) and high-temperature stress during the booting (HT1) and grain-filling stages (HT2). Compared to the control, HT1 significantly reduced the spikelets panicle-1 (16.1%), seed setting rate (67.5%), and grain weight (7.4%), while HT2 significantly reduced the seed setting rate (6.0%) and grain weight (7.4%). In terms of quality, both HT1 and HT2 significantly increased chalkiness, chalky grain rate, gelatinization temperature, peak viscosity (PV), trough viscosity (TV), final viscosity (FV), and protein content in most varieties, and significantly decreased grain length, grain width, total starch content, and amylose content. However, a comparison between HT1 and HT2 revealed that the increase in chalkiness, chalky grain rate, PV, TV, and FV was greater under HT2. HT1 resulted in a greater decrease in grain length, grain width, total starch content, and amylose content, as well as an increase in protein content. Additionally, HT1 led to a significant decrease in amylopectin content, which was not observed under HT2. Therefore, future efforts in breeding and cultivating high-quality hybrid rice should carefully account for the effects of high temperatures at different stages on both yield and quality.

4.
Plant Physiol ; 191(2): 1167-1185, 2023 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-36494097

RESUMO

All biological functions evolve by fixing beneficial mutations and removing deleterious ones. Therefore, continuously fixing and removing the same essential function to separately diverge monophyletic gene families sounds improbable. Yet, here we report that brassinosteroid insensitive1 kinase inhibitor1 (BKI1)/membrane-associated kinase regulators (MAKRs) regulating a diverse function evolved into BKI1 and MAKR families from a common ancestor by respectively enhancing and losing ability to bind brassinosteroid receptor brassinosteroid insensitive1 (BRI1). The BKI1 family includes BKI1, MAKR1/BKI1-like (BKL) 1, and BKL2, while the MAKR family contains MAKR2-6. Seedless plants contain only BKL2. In seed plants, MAKR1/BKL1 and MAKR3, duplicates of BKL2, gained and lost the ability to bind BRI1, respectively. In angiosperms, BKL2 lost the ability to bind BRI1 to generate MAKR2, while BKI1 and MAKR6 were duplicates of MAKR1/BKL1 and MAKR3, respectively. In dicots, MAKR4 and MAKR5 were duplicates of MAKR3 and MAKR2, respectively. Importantly, BKI1 localized in the plasma membrane, but BKL2 localized to the nuclei while MAKR1/BKL1 localized throughout the whole cell. Importantly, BKI1 strongly and MAKR1/BKL1 weakly inhibited plant growth, but BKL2 and the MAKR family did not inhibit plant growth. Functional study of the chimeras of their N- and C-termini showed that only the BKI1 family was partially reconstructable, supporting stepwise evolution by a seesaw mechanism between their C- and N-termini to alternately gain an ability to bind and inhibit BRI1, respectively. Nevertheless, the C-terminal BRI1-interacting motif best defines the divergence of BKI1/MAKRs. Therefore, BKI1 and MAKR families evolved by gradually gaining and losing the same function, respectively, extremizing divergent evolution and adding insights into gene (BKI1/MAKR) duplication and divergence.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitosteróis , Receptores de Esteroides , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Arabidopsis/metabolismo , Fitosteróis/metabolismo , Transdução de Sinais , Receptores de Esteroides/metabolismo
5.
Biology (Basel) ; 11(12)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36552326

RESUMO

Using indica rice flour as the main raw material and adding blueberry residue powder, the indica rice expanded powder (REP) containing blueberry residue was prepared by extrusion and comminution. The effects of extrusion processing on the nutritional components, color difference, antioxidant performance and volatile organic compounds (VOCs) of indica rice expanded powder with or without blueberry residue were compared. The results showed that the contents of fat and total starch decreased significantly after extrusion, while the contents of total dietary fiber increased relatively. Especially, the effect of DPPH and ABTS+ free radical scavenging of the indica rice expanded flour was significantly improved by adding blueberry residue powder. A total of 104 volatile compounds were detected in the indica rice expanded powder with blueberry residue (REPBR) by Electronic Nose and GC-IMS analysis. Meanwhile, 86 volatile organic compounds were successfully identified. In addition, the contents of 16 aldehydes, 17 esters, 10 ketones and 8 alcohols increased significantly. Therefore, adding blueberry residue powder to indica rice flour for extrusion is an efficient and innovative processing method, which can significantly improve its nutritional value, antioxidant performance and flavor substances.

6.
J Exp Bot ; 72(5): 1748-1763, 2021 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-33247718

RESUMO

Brassinosteroids (BRs) are essential plant hormones. In angiosperms, brassinolide and castasterone, the first and second most active BRs, respectively, are synthesised by CYP85A2 and CYP85A/A1, respectively. BRs in angiosperms function through an essential receptor, BR Insensitive 1 (BRI1). In addition, some angiosperms also have non-essential BRI1-like 1/3 (BRL1/3). In conifers, BRs promote seed germination under drought stress; however, how BRs function in gymnosperms is unknown. In this study, we performed functional complementation of BR biosynthesis and receptor genes from Picea abies with respective Arabidopsis mutants. We found that P. abies possessed functional PaCYP85A and PaBRL1 but not PaCYP85A2 or PaBRI1, and this results in weak BR signaling, and both PaCYP85A and PaBRL1 were abundantly expressed. However, neither BR treatment of P. abies seedlings nor expression of PaBRL1 in the Arabidopsis Atbri1 mutant promoted plant height, despite the fact that BR-responsive genes were activated. Importantly, chimeric AtBRI1 replaced with the BR-binding domain of PaBRL1 complemented the Atbri1 phenotypes. Furthermore, PaBRL1 had less kinase activity than BRI1 in vitro. Overall, P. abies had weak but still active BR signaling, explaining aspects of its slow growth and high stress tolerance. Our study sheds light on the functional and evolutionary significance of distinct BR signaling that is independent of BRI1 and brassinolide.


Assuntos
Brassinosteroides/biossíntese , Picea , Proteínas de Plantas/metabolismo , Proteínas Quinases/metabolismo , Picea/enzimologia , Picea/genética , Proteínas de Plantas/genética , Proteínas Quinases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA