RESUMO
Polymer grouting materials are increasingly used in the filling of mine fissures. Unlike conventional inorganic grouting materials, the self-expansion of polymers adds complexity to their diffusion process within the crack. The objective of this research was to examine how polymer grouting material spreads in cracks at ambient temperatures and pressure. The investigation involved conducting grouting tests and performing numerical fluid simulation calculations using the finite-volume method in the computational fluid dynamics software, ANSYS FLUENT 2022 R1. The fluid volume approach was employed to determine the boundary between fluid and air and to ascertain the variation patterns of density in the slurry and the fracture system. This study applied the principles of fluid mechanics to investigate the patterns of variation in the physical characteristics of polymer grouting materials, including their density, pressure, flow velocity, and movement distance, during the diffusion process. The results indicated that the density of the polymer grouting material decreased exponentially over time throughout the diffusion process. With the increase in the grouting's volume, the grout's pressure and the permeable distance of the grout increased. The slurry's pressure near the grouting hole exceeded the other points' pressure. The physical parameters of the slurry were numerically simulated by ANSYS FLUENT 2022 R1 software, and the results were compared with the experimental data. After comparing the numerical simulation results with the test data, it was clear that the numerical simulation method was superior in accurately predicting the distribution pattern of each parameter of the polymer slurry during diffusion. The grouting volume, pressure distribution, and real-time change in the position of the flow of slurry could be efficiently determined through numerical calculation and simulated grouting tests. This work can offer valuable information for designing polymer grouting materials used in underground mine fissures.
RESUMO
With the increasing drilling depth of mines, the cross-complexity of fissures in the rock body, and the frequent occurrence of sudden water surges, polymer slurry, with its advantages of good permeability and strong water plugging, is increasingly used in mine grouting projects. Additional research is needed in order to further improve the grouting performance of polymer slurry, ensure the safety of mining operations, and reduce the grouting cost. In this paper, a polymer composite grouting material was prepared with diphenyl methyl diisocyanate, polyether polyol, and fly ash, as the main raw materials, with coupling agent and catalyst as auxiliary reagents. The performance of the composite grouting material in terms of mechanical properties, thermal stability, hydrophobicity, and bonding was explored. This study's findings indicated that incorporating fly ash led to notable enhancements in the thermal stability and water resistance of the polymer slurry. Furthermore, the introduction of fly ash notably raised the starting degradation temperature of the polymer, boosted the water contact angle of the composite material, and reduced the density and reaction temperature of the composite material. In addition, the catalyst and coupling agent as auxiliary reagents affected the polymers in terms of mechanical properties; in this paper, dibutyltin dilaurate was used as the catalyst, and organosilanes were used as the coupling agent. The catalyst successfully sped up the polymer's gel time, however, an excessive quantity of catalyst compromised the polymer's mechanical characteristics. The addition of organosilanes has a positive effect on the dynamic mechanical properties of the composites, fracture toughness, compression, bending, and bond strength. The research can offer a theoretical direction for creating polymer mixtures in mine grouting projects.
RESUMO
The existence of fissures poses a serious threat to the safe production of underground mines, and this paper investigates a polymer grouting material for filling fissures in underground mines. To optimise the ratio of polymer grouting materials, this paper designed 16 test groups using the orthogonal test method to find the most reasonable slurry ratio. In order to study the gel diffusion process of polymer slurry in the fissure and to explore the changes of various parameters of the slurry after injection, simulated grouting tests were carried out, and the distribution laws of viscosity, pressure, and diffusion distance of the slurry were discussed. The findings indicate that when the proportion of ethylenediamine polypropylene oxide tetrol: glycerol polyether: catalyst: foam stabiliser is 10:8:0.5:0.4, the polymer grouting material has excellent compressive strength, and the maximum compressive strength can reach 12.31 MPa. Prior to reaching the gel time point, the viscosity of the polymer slurry was nearly constant, which is basically maintained at 0.772 Pa·s under normal temperature and pressure, but after reaching the gel time point, it abruptly rose. As the slurry mass increased, so did the penetration distance and pressure; in the simulated grouting test, when the slurry mass was 400 g, the maximum diffusion distance of the slurry reached 39 cm. Conversely, as the fracture pore size increased, the diffusion distance and pressure of the slurry decreased. Along the diffusion path, the slurry pressure progressively drops, but this change is not synchronised with the diffusion distance's change. This work can serve as a reference for the configuration of polymer slurry and aid in comprehending the diffusion law of the slurry within the fissure.
RESUMO
The grain selection process in a Z-form selector for Ni-based single-crystal superalloy was simulated using a macro-scale ProCAST software (2013 version) coupled CAFE module combined with an experiment to investigate the grain selection procedure and mechanism with different grain positions and crystal orientation relationships. A non-stationary solidification process was found in the Z-form selector, and the liquid-solid (L-S) interface was tilted in the same direction as the selector channel during directional solidification. Given that the grain boundary was parallel to the Z-form selector, the overgrowth rate of the bi-crystal in the selector channel was very low. The initial position of the bi-crystal in the selector channel has a greater effect on the overgrowth rate than the effects of primary and secondary orientations. The grain selection was a result of the coupling of the competitive grain growth effect and geometrical restriction effect. Finally, the selection grain mechanism within the Z-form selector was discussed, coalescing the temperature field and the grain competition growth mechanism.
RESUMO
In this study, organic polymer polyurethane grouting materials were prepared using isocyanate and polyether polyol as the main agents and various additives, the slurry coagulation process was investigated, and the mechanical properties of the polymer samples were tested to explore the influence of the density and soaking time of the polymer on the strength of the samples. The microstructure of the polymer was observed via electron microscopy, and relying on image analysis software, the structural parameters of the polymer cell were analyzed and calculated; the model equation between density and yield strength was established based on the strength model of porous materials developed by Gibson and Ashby. The results show that the initial viscosity and gel time of the polyurethane slurry decrease with the increase of the initial temperature, and the viscosity changes abruptly when the slurry reaches the gel point. The mechanical properties of the polymer increased with increasing density and decreased with increasing soaking time. The interior of the polymer is a porous structure and the pores are approximately spherical; the higher the density of the polymer material, the more uniform the stress distribution of the material, and the higher the percentage of the matrix, which in turn leads to better mechanical properties of the material. The diameter of the polymer cell is negatively correlated with the density, and the model established based on the microscopic parameters of the cell can better predict the yield strength of the polymer. This study helps to deepen the understanding of the microstructure and mechanical properties of polyurethane and provides a certain reference for the application of polyurethane in underground mine reinforcement engineering.
RESUMO
Trapped space charges in epoxy composite distort the electric field, which will induce the failure of the insulation system, and nano graphene oxide may inhibit the curing behavior of epoxy resin matrix. This paper analyzes how the two interfaces affect the electron traps of epoxy resin/graphene oxide systems with different nanofiller contents. The electron affinity energy of epoxy resin matrix and nano filler molecules in the epoxy resin/graphene oxide system is calculated based on quantum chemistry. It is found that nano graphene oxide has a strong electron affinity energy and is easier to capture electrons. Then the influence of the interface formed by the epoxy resin matrix and the nano graphene oxide on the electron transfer ability is calculated. The epoxy resin matrix contains the electron transfer ability of interfaces formed by nano graphene oxide and the molecular chain is different from that of unreacted molecules. The results can provide a reference for the modification of epoxy resin/graphene oxide nanocomposites.