Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
2.
Mol Plant ; 17(3): 438-459, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38310351

RESUMO

The spike architecture of wheat plays a crucial role in determining grain number, making it a key trait for optimization in wheat breeding programs. In this study, we used a multi-omic approach to analyze the transcriptome and epigenome profiles of the young spike at eight developmental stages, revealing coordinated changes in chromatin accessibility and H3K27me3 abundance during the flowering transition. We constructed a core transcriptional regulatory network (TRN) that drives wheat spike formation and experimentally validated a multi-layer regulatory module involving TaSPL15, TaAGLG1, and TaFUL2. By integrating the TRN with genome-wide association studies, we identified 227 transcription factors, including 42 with known functions and 185 with unknown functions. Further investigation of 61 novel transcription factors using multiple homozygous mutant lines revealed 36 transcription factors that regulate spike architecture or flowering time, such as TaMYC2-A1, TaMYB30-A1, and TaWRKY37-A1. Of particular interest, TaMYB30-A1, downstream of and repressed by WFZP, was found to regulate fertile spikelet number. Notably, the excellent haplotype of TaMYB30-A1, which contains a C allele at the WFZP binding site, was enriched during wheat breeding improvement in China, leading to improved agronomic traits. Finally, we constructed a free and open access Wheat Spike Multi-Omic Database (http://39.98.48.156:8800/#/). Our study identifies novel and high-confidence regulators and offers an effective strategy for dissecting the genetic basis of wheat spike development, with practical value for wheat breeding.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Triticum/genética , Melhoramento Vegetal , Redes Reguladoras de Genes/genética , Multiômica , Fatores de Transcrição/genética
3.
Parasitol Res ; 123(1): 43, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38095728

RESUMO

Hypoderma bovis (H. bovis) and Hypoderma sinense (H. sinense) are insects that cause hypodermosis in yaks and Bos taurus. Hypodermosis is a severe skin condition that not only impairs the development of local animal husbandry but also poses threats to human health as a zoonosis. The Qinghai-Tibetan Plateau (QTP) is known as the "Roof of the World." Its unique geographical environment and climate conditions have supported the growth of a wide range of mammals, providing favorable conditions for Hypoderma spp. to complete their life cycles. In this study, the whole mitochondrial genomes of H. bovis and H. sinense collected from the QTP were sequenced and phylogenetically analyzed. We found that the whole genomes of H. bovis and H. sinense are 16,283 bp and 16,300 bp in length, respectively. Both the H. bovis and H. sinense genomes have 37 mitochondrial genes, which include two rRNA genes (16S rRNA and 12S rRNA), 22 tRNA genes, the control region (D-loop region), the light chain replication initiation region, and 13 protein-coding genes (PCGs). The phylogenetic tree generated based on the 13 PCGs revealed close phylogenetic relationships between H. sinense, H. bovis, and Hypoderma lineatum. A similar result was also found in our phylogenetic analysis based on 18S rRNA and 28S rRNA. However, analysis of cytochrome oxidase subunit I (COI) showed cluster of H. bovis, H. sinense, and Cuterebra spp. on the same branch, all belonging to Oestridae. The differentiation time generated based on 13 PCGs indicates that H. bovis and H. sinense differentiated and formed ~4.69 million years ago (Mya) and ~4.06 Mya, respectively. This timing coincides with the differentiation and appearance of yak and Bos taurus in the Pliocene (~4.7 Mya), indicating that the parasites and mammals diverged in close temporal proximity. Of note, this period also witnessed a rapid uplift of the QTP, causing significant climate and environmental changes. Thus, we conjecture that the differentiation of Hypoderma spp. is potentially related to the differentiation of their host species, as well as climate changes caused by the uplift of the QTP. Overall, our study can provide valuable data to support further studies on the phylogeny and differentiation of Hypoderma spp. on the QTP.


Assuntos
Dípteros , Animais , Bovinos , Humanos , Filogenia , RNA Ribossômico 16S , Tibet , Mitocôndrias/genética , Mamíferos
4.
Int J Mol Sci ; 24(19)2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37834288

RESUMO

Low phosphorus (LP) stress leads to a significant reduction in wheat yield, primarily in the reduction of biomass, the number of tillers and spike grains, the delay in heading and flowering, and the inhibition of starch synthesis and grouting. However, the differences in regulatory pathway responses to low phosphorus stress among different wheat genotypes are still largely unknown. In this study, metabolome and transcriptome analyses of G28 (LP-tolerant) and L143 (LP-sensitive) wheat varieties after 72 h of normal phosphorus (CK) and LP stress were performed. A total of 181 and 163 differentially accumulated metabolites (DAMs) were detected for G28CK vs. G28LP and L143CK vs. L143LP, respectively. Notably, the expression of pilocarpine (C07474) in G28CK vs. G28LP was significantly downregulated 4.77-fold, while the expression of neochlorogenic acid (C17147) in L143CK vs. L143LP was significantly upregulated 2.34-fold. A total of 4023 differentially expressed genes (DEGs) were acquired between G28 and L143, of which 1120 DEGs were considered as the core DEGs of LP tolerance of wheat after LP treatment. The integration of metabolomics and transcriptomic data further revealed that the LP tolerance of wheat was closely related to 15 metabolites and 18 key genes in the sugar and amino acid metabolism pathway. The oxidative phosphorylation pathway was enriched to four ATPases, two cytochrome c reductase genes, and fumaric acid under LP treatment. Moreover, PHT1;1, TFs (ARFA, WRKY40, MYB4, MYB85), and IAA20 genes were related to the Pi starvation stress of wheat roots. Therefore, the differences in LP tolerance of different wheat varieties were related to energy metabolism, amino acid metabolism, phytohormones, and PHT proteins, and precisely regulated by the levels of various molecular pathways to adapt to Pi starvation stress. Taken together, this study may help to reveal the complex regulatory process of wheat adaptation to Pi starvation and provide new genetic clues for further study on improving plant Pi utilization efficiency.


Assuntos
Plântula , Transcriptoma , Plântula/genética , Plântula/metabolismo , Triticum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica , Metaboloma/genética , Fósforo/metabolismo , Aminoácidos/metabolismo , Regulação da Expressão Gênica de Plantas
5.
Mol Plant ; 16(12): 1893-1910, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37897037

RESUMO

Despite recent progress in crop genomics studies, the genomic changes brought about by modern breeding selection are still poorly understood, thus hampering genomics-assisted breeding, especially in polyploid crops with compound genomes such as common wheat (Triticum aestivum). In this work, we constructed genome resources for the modern elite common wheat variety Aikang 58 (AK58). Comparative genomics between AK58 and the landrace cultivar Chinese Spring (CS) shed light on genomic changes that occurred through recent varietal improvement. We also explored subgenome diploidization and divergence in common wheat and developed a homoeologous locus-based genome-wide association study (HGWAS) approach, which was more effective than single homoeolog-based GWAS in unraveling agronomic trait-associated loci. A total of 123 major HGWAS loci were detected using a genetic population derived from AK58 and CS. Elite homoeologous haplotypes (HHs), formed by combinations of subgenomic homoeologs of the associated loci, were found in both parents and progeny, and many could substantially improve wheat yield and related traits. We built a website where users can download genome assembly sequence and annotation data for AK58, perform blast analysis, and run JBrowse. Our work enriches genome resources for wheat, provides new insights into genomic changes during modern wheat improvement, and suggests that efficient mining of elite HHs can make a substantial contribution to genomics-assisted breeding in common wheat and other polyploid crops.


Assuntos
Pão , Triticum , Triticum/genética , Haplótipos/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Poliploidia , Genoma de Planta/genética
6.
Int J Parasitol Parasites Wildl ; 21: 110-115, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37575666

RESUMO

Enterocytozoon bieneusi is considered to be a microsporidial species of humans and animals in the worldwide. Limited data have been reported on the prevalence and genotypes of E. bieneusi in livestock and wild animals around Qinghai Lake in the Qinghai-Tibetan Plateau area, which shares water sources, grasslands, and harsh climate with high altitudes. In this study, fecal samples from 110 Tibetan sheep, 128 yaks, 227 wild birds, 96 blue sheep (Pseudois nayaur) and 268 Przewalski's gazelle (Procapra przewalskii) around Qinghai Lake were collected, and then tested for E. bieneusi by PCR and sequencing analysis based on the ribosomal internal transcribed spacer. Among them, ten (9.09%) samples from Tibetan sheep, five (3.91%) from yaks, five (2.20%) from wild birds, one (1.04%) from wild blue sheep and two (0.75%) from Przewalski's gazelle were positive for E. bieneusi. Among sheep, there were nine E. bieneusi genotypes, including two known genotypes (BEB6 and J), and seven novel genotypes (named CHS18-CHS24). From yaks, four genotypes were identified, including two known ones (BEB4 and J) and two novel genotypes (named CHN15 and CHN16). While in wild animals, eight genotypes were found, including five different genotypes from wild bids, with three known genotypes (EbpC, J and NCF2), two novel genotypes (named CHWB1 and CHS24), and two genotypes from Przewalski's gazelle, with one known genotype J and one novel genotype CHWPG1, and one novel genotype CHWBS1 from blue sheep. According to the phylogenetic analysis, five isolates belonged to group 1, and the others were clustered into group 2. This study provides unique data on the epidemiological reports and potential risk factors for E. bieneusi in both domesticated livestock and wild animals around Qinghai Lake in the Qinghai-Tibetan Plateau area; it is important to better understand the molecular epidemiology and zoonotic potential of E. bieneusi in the Qinghai-Tibetan Plateau area.

7.
Genome Biol ; 24(1): 196, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37641093

RESUMO

BACKGROUND: Large-scale genotype-phenotype association studies of crop germplasm are important for identifying alleles associated with favorable traits. The limited number of single-nucleotide polymorphisms (SNPs) in most wheat genome-wide association studies (GWASs) restricts their power to detect marker-trait associations. Additionally, only a few genes regulating grain number per spikelet have been reported due to sensitivity of this trait to variable environments. RESULTS: We perform a large-scale GWAS using approximately 40 million filtered SNPs for 27 spike morphology traits. We detect 132,086 significant marker-trait associations and the associated SNP markers are located within 590 associated peaks. We detect additional and stronger peaks by dividing spike morphology into sub-traits relative to GWAS results of spike morphology traits. We propose that the genetic dissection of spike morphology is a powerful strategy to detect signals for grain yield traits in wheat. The GWAS results reveal that TaSPL17 positively controls grain size and number by regulating spikelet and floret meristem development, which in turn leads to enhanced grain yield per plant. The haplotypes at TaSPL17 indicate geographical differentiation, domestication effects, and breeding selection. CONCLUSION: Our study provides valuable resources for genetic improvement of spike morphology and a fast-forward genetic solution for candidate gene detection and cloning in wheat.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Triticum/genética , Melhoramento Vegetal , Haplótipos , Fenótipo
8.
PLoS Negl Trop Dis ; 17(7): e0011520, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37490505

RESUMO

Liver fibrosis is one of the histopathological characters during Echinococcus multilocularis infection. The activation of hepatic stellate cells (HSCs) is a key event in the development of liver fibrosis. However, the molecular mechanism of HSC activation in the E. multilocularis infection-induced liver fibrosis remains largely unclear. Here, we reported that mmu-miR-342-3p was most dominantly expressed in HSCs and was upregulated in the HSCs in response to E. multilocularis infection. We further showed that mmu-miR-342-3p was able to bind to the 3' UTR of the Zbtb7a gene and regulated its expression. Moreover, mmu-miR-342-3p expression was negatively correlated with its target gene Zbtb7a in HSCs during E. multilocularis infection. Knockdown of mmu-miR-342-3p promoted the expression of Gfap in the activated HSCs in vitro. In the E. multilocularis-infected mice, knockdown of mmu-miR-342-3p suppressed the expression of α-Sma, Col1α1, and TGF-ß but promoted the expression of Gfap. Therefore, mmu-miR-342-3p is a key regulator for activation of HSCs, and inhibiting mmu-miR-342-3p to suppressed Zbtb7a-mediated TGF-ß signaling in activated HSCs could be a novel strategy to treat liver fibrosis induced by E. multilocularis.


Assuntos
Células Estreladas do Fígado , MicroRNAs , Camundongos , Animais , Células Estreladas do Fígado/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA , MicroRNAs/genética , MicroRNAs/metabolismo , Cirrose Hepática/patologia , Fator de Crescimento Transformador beta/metabolismo , Proliferação de Células/genética
9.
J Clin Med ; 12(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37445287

RESUMO

Our aim was to assess the therapeutic efficacy of a modified single-arm suture technique on traumatic cyclodialysis cleft with vitreoretinal injury. The procedure involved fixing a detached ciliary body using a single-armed 10-0 polypropylene suture under the assistance of a 29-gauge needle. Patients with a traumatic cyclodialysis cleft combined with an anterior and posterior segment injury who underwent modified internal cyclopexy together with vitreoretinal surgery were enrolled in this study. Ultrasound biomicroscopy (UBM) was used to diagnose and evaluate the cyclodialysis and anterior segment injury. B-scan ultrasonography was performed to assess the condition of the vitreous, retina and choroid. The surgical time and successful rate for repairing the cyclodialysis cleft were recorded. Preoperative and postoperative best-corrected visual acuity (BCVA), and intraocular pressure (IOP) were documented for assessment. The study included 20 eyes. The extent of the cyclodialysis cleft was from 30° to 360°. Besides a traumatic cyclodialysis cleft, the included cases also combined this with vitreous hemorrhages, retinal detachment, macular holes, choroid avulsion, and suprachoroidal hemorrhage. All the clefts were anatomically closed in one surgery. The average surgical time for fixing the cyclodialysis cleft was 2.68 ± 0.54 min/30° cleft. A significant improvement in LogMAR BCVA was observed from 2.94 ± 0.93 preoperatively to 1.81 ± 1.11 at the 6-month follow-up. IOP was elevated from 10.90 ± 6.18 mmHg preoperatively to 14.45 ± 2.35 mmHg at the 6-month follow-up. The modified single-armed suture technique was proved to be an effective method to fix the traumatic cyclodialysis cleft, which could facilitate the use of the procedure to repair chorioretinal disorders. It improved the BCVA and maintained the IOP with less postoperative complications.

10.
J Integr Plant Biol ; 65(9): 2056-2070, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37310066

RESUMO

Drought is a major environmental stress limiting global wheat (Triticum aestivum) production. Exploring drought tolerance genes is important for improving drought adaptation in this crop. Here, we cloned and characterized TaTIP41, a novel drought tolerance gene in wheat. TaTIP41 is a putative conserved component of target of rapamycin (TOR) signaling, and the TaTIP41 homoeologs were expressed in response to drought stress and abscisic acid (ABA). The overexpression of TaTIP41 enhanced drought tolerance and the ABA response, including ABA-induced stomatal closure, while its downregulation using RNA interference (RNAi) had the opposite effect. Furthermore, TaTIP41 physically interacted with TaTAP46, another conserved component of TOR signaling. Like TaTIP41, TaTAP46 positively regulated drought tolerance. Furthermore, TaTIP41 and TaTAP46 interacted with type-2A protein phosphatase (PP2A) catalytic subunits, such as TaPP2A-2, and inhibited their enzymatic activities. Silencing TaPP2A-2 improved drought tolerance in wheat. Together, our findings provide new insights into the roles of TaTIP41 and TaTAP46 in the drought tolerance and ABA response in wheat, and their potential application in improving wheat environmental adaptability.


Assuntos
Resistência à Seca , Triticum , Triticum/genética , Plantas Geneticamente Modificadas/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Estresse Fisiológico/genética , Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
J Integr Plant Biol ; 65(8): 1918-1936, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37158049

RESUMO

Drought seriously impacts wheat production (Triticum aestivum L.), while the exploitation and utilization of genes for drought tolerance are insufficient. Leaf wilting is a direct reflection of drought tolerance in plants. Clade A PP2Cs are abscisic acid (ABA) co-receptors playing vital roles in the ABA signaling pathway, regulating drought response. However, the roles of other clade PP2Cs in drought tolerance, especially in wheat, remain largely unknown. Here, we identified a gain-of-function drought-induced wilting 1 (DIW1) gene from the wheat Aikang 58 mutant library by map-based cloning, which encodes a clade I protein phosphatase 2C (TaPP2C158) with enhanced protein phosphatase activity. Phenotypic analysis of overexpression and CRISPR/Cas9 mutant lines demonstrated that DIW1/TaPP2C158 is a negative regulator responsible for drought resistance. We found that TaPP2C158 directly interacts with TaSnRK1.1 and de-phosphorylates it, thus inactivating the TaSnRK1.1-TaAREB3 pathway. TaPP2C158 protein phosphatase activity is negatively correlated with ABA signaling. Association analysis suggested that C-terminal variation of TaPP2C158 changing protein phosphatase activity is highly correlated with the canopy temperature, and seedling survival rate under drought stress. Our data suggest that the favorable allele with lower phosphatase activity of TaPP2C158 has been positively selected in Chinese breeding history. This work benefits us in understanding the molecular mechanism of wheat drought tolerance, and provides elite genetic resources and molecular markers for improving wheat drought tolerance.


Assuntos
Secas , Triticum , Triticum/metabolismo , Resistência à Seca , Monoéster Fosfórico Hidrolases/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Melhoramento Vegetal , Proteína Fosfatase 2C/genética , Proteína Fosfatase 2C/metabolismo , Ácido Abscísico/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Plantas Geneticamente Modificadas/metabolismo
12.
Theor Appl Genet ; 136(6): 123, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147554

RESUMO

KEY MESSAGE: Wheat NAC-A18 regulates both starch and storage protein synthesis in the grain, and a haplotype with positive effects on grain weight showed increased frequency during wheat breeding in China. Starch and seed storage protein (SSP) directly affect the processing quality of wheat grain. The synthesis of starch and SSP are also regulated at the transcriptional level. However, only a few starch and SSP regulators have been identified in wheat. In this study, we discovered a NAC transcription factor, designated as NAC-A18, which acts as a regulator of both starch and SSP synthesis. NAC-A18, is predominately expressed in wheat developing grains, encodes a transcription factor localized in the nucleus, with both activation and repression domains. Ectopic expression of wheat NAC-A18 in rice significantly decreased starch accumulation and increased SSP accumulation and grain size and weight. Dual-luciferase reporter assays indicated that NAC-A18 could reduce the expression of TaGBSSI-A1 and TaGBSSI-A2, and enhance the expression of TaLMW-D6 and TaLMW-D1. A yeast one hybrid assay demonstrated that NAC-A18 bound directly to the cis-element "ACGCAA" in the promoters of TaLMW-D6 and TaLMW-D1. Further analysis indicated that two haplotypes were formed at NAC-A18, and that NAC-A18_h1 was a favorable haplotype correlated with higher thousand grain weight. Based on limited population data, NAC-A18_h1 underwent positive selection during Chinese wheat breeding. Our study demonstrates that wheat NAC-A18 regulates starch and SSP accumulation and grain size. A molecular marker was developed for the favorable allele for breeding applications.


Assuntos
Amido , Triticum , Amido/metabolismo , Triticum/genética , Triticum/metabolismo , Proteínas de Plantas/metabolismo , Melhoramento Vegetal , Grão Comestível/metabolismo , Fatores de Transcrição/metabolismo
13.
Genome Biol ; 24(1): 114, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173729

RESUMO

BACKGROUND: Plant architecture associated with increased grain yield and adaptation to the local environments is selected during wheat (Triticum aestivum) breeding. The internode length of individual stems and tiller length of individual plants are important for the determination of plant architecture. However, few studies have explored the genetic basis of these traits. RESULTS: Here, we conduct a genome-wide association study (GWAS) to dissect the genetic basis of geographical differentiation of these traits in 306 worldwide wheat accessions including both landraces and traditional varieties. We determine the changes of haplotypes for the associated genomic regions in frequency in 831 wheat accessions that are either introduced from other countries or developed in China from last two decades. We identify 83 loci that are associated with one trait, while the remaining 247 loci are pleiotropic. We also find 163 associated loci are under strong selective sweep. GWAS results demonstrate independent regulation of internode length of individual stems and consistent regulation of tiller length of individual plants. This makes it possible to obtain ideal haplotype combinations of the length of four internodes. We also find that the geographical distribution of the haplotypes explains the observed differences in internode length among the worldwide wheat accessions. CONCLUSION: This study provides insights into the genetic basis of plant architecture. It will facilitate gene functional analysis and molecular design of plant architecture for breeding.


Assuntos
Locos de Características Quantitativas , Triticum , Triticum/genética , Estudo de Associação Genômica Ampla/métodos , Melhoramento Vegetal , Fenótipo , Polimorfismo de Nucleotídeo Único
14.
Parasitol Res ; 122(7): 1709-1714, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37202562

RESUMO

Liver flukes (Fasciola spp.) and rumen flukes (Paramphistomum spp.) are significant parasites in livestock worldwide, and Fasciola spp. are considered an important zoonotic parasite. To our knowledge, there are no reports on fluke species identification and epidemiological prevalence in yak and Tibetan sheep around Qinghai Lake, China. Therefore, this study aimed to identify the major fluke species and determine the prevalence of fluke infections among yak and Tibetan sheep in this area. A total of 307 fecal samples were collected and fluke eggs identified using morphology and molecular methods. Our study is the first to display that the predominant fluke species were F. hepatica and P. leydeni in yak and Tibetan sheep around Qinghai Lake. The overall prevalence of fluke infections in yak and Tibetan sheep was 57.7% (177/307). Specifically, the prevalences of F. hepatica and P. leydeni were 15.0% (46/307) and 31.6% (97/307), respectively, and the co-infection of both species was 11.1% (34/307). No significant difference existed in the prevalence of overall fluke infection between yak and Tibetan sheep (p < 0.05). However, F. hepatica prevalence was significantly different in yak and Tibetan sheep (p < 0.05) but not P. leydeni. The findings of this study provide useful information about the current status of natural fluke invasion in yak and Tibetan sheep around Qinghai Lake, which could be important for monitoring and controlling these parasites in the region.


Assuntos
Fasciola hepatica , Fasciolíase , Doenças dos Ovinos , Trematódeos , Infecções por Trematódeos , Ovinos , Bovinos , Animais , Prevalência , Tibet/epidemiologia , Lagos , Infecções por Trematódeos/epidemiologia , Infecções por Trematódeos/veterinária , Infecções por Trematódeos/parasitologia , Fasciolíase/parasitologia , China/epidemiologia , Doenças dos Ovinos/epidemiologia , Doenças dos Ovinos/parasitologia
15.
Front Plant Sci ; 14: 1178624, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37089636

RESUMO

Plant architecture is a crucial influencing factor of wheat yield and adaptation. In this study, we cloned and characterized TaSPL14, a homologous gene of the rice ideal plant architecture gene OsSPL14 in wheat. TaSPL14 homoeologs (TaSPL14-7A, TaSPL14-7B and TaSPL14-7D) exhibited similar expression patterns, and they were all preferentially expressed in stems at the elongation stage and in young spikes. Moreover, the expression level of TaSPL14-7A was higher than that of TaSPL14-7B and TaSPL14-7D. Overexpression of TaSPL14-7A in wheat resulted in significant changes in plant architecture and yield traits, including decreased tiller number and increased kernel size and weight. Three TaSPL14-7A haplotypes were identified in Chinese wheat core collection, and haplotype-based association analysis showed that TaSPL14-7A-Hap1/2 were significantly correlated with fewer tillers, larger kernels and higher kernel weights in modern cultivars. The haplotype effect resulted from a difference in TaSPL14-7A expression levels among genotypes, with TaSPL14-7A-Hap1/2 leading to higher expression levels than TaSPL14-7A-Hap3. As favorable haplotypes, TaSPL14-7A-Hap1/2 underwent positive selection during global wheat breeding over the last century. Together, the findings of our study provide insight into the function and genetic effects of TaSPL14 and provide a useful molecular marker for wheat breeding.

16.
J Genet Genomics ; 50(11): 883-894, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37062449

RESUMO

Starch is the most abundant substance in wheat (Triticum aestivum L.) endosperm and provides the major carbohydrate energy for human daily life. Starch synthesis-related (SSR) genes are believed to be spatiotemporally specific, but their transcriptional regulation remains unclear in wheat. Here, we investigate the role of the basic helix-loop-helix (bHLH) transcription factor TabHLH95 in starch synthesis. TabHLH95 is preferentially expressed in the developing grains in wheat and encodes a nucleus localized protein without autoactivation activity. The Tabhlh95 knockout mutants display smaller grain size and less starch content than wild type, whereas overexpression of TabHLH95 enhances starch accumulation and significantly improves thousand grain weight. Transcriptome analysis reveals that the expression of multiple SSR genes is significantly reduced in the Tabhlh95 mutants. TabHLH95 binds to the promoters of ADP-glucose pyrophosphorylase large subunit 1 (AGPL1-1D/-1B), AGPL2-5D, and isoamylase (ISA1-7D) and enhances their transcription. Intriguingly, TabHLH95 interacts with the nuclear factor Y (NF-Y) family transcription factor TaNF-YB1, thereby synergistically regulating starch synthesis. These results suggest that the TabHLH95-TaNF-YB1 complex positively modulates starch synthesis and grain weight by regulating the expression of a subset of SSR genes, thus providing a good potential approach for genetic improvement of grain productivity in wheat.


Assuntos
Proteínas de Plantas , Triticum , Humanos , Triticum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pão , Grão Comestível/genética , Grão Comestível/metabolismo , Amido/genética , Amido/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação da Expressão Gênica de Plantas/genética
17.
Int J Mol Sci ; 24(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37108408

RESUMO

Under climate change, drought is one of the most limiting factors that influences wheat (Triticum aestivum L.) production. Exploring stress-related genes is vital for wheat breeding. To identify genes related to the drought tolerance response, two common wheat cultivars, Zhengmai 366 (ZM366) and Chuanmai 42 (CM42), were selected based on their obvious difference in root length under 15% PEG-6000 treatment. The root length of the ZM366 cultivar was significantly longer than that of CM42. Stress-related genes were identified by RNA-seq in samples treated with 15% PEG-6000 for 7 days. In total, 11,083 differentially expressed genes (DEGs) and numerous single nucleotide polymorphisms (SNPs) and insertions/deletions (InDels) were identified. GO enrichment analysis revealed that the upregulated genes were mainly related to the response to water, acidic chemicals, oxygen-containing compounds, inorganic substances, and abiotic stimuli. Among the DEGs, the expression levels of 16 genes in ZM366 were higher than those in CM42 after the 15% PEG-6000 treatment based on RT-qPCR. Furthermore, EMS-induced mutants in Kronos (T. turgidum L.) of 4 representative DEGs possessed longer roots than the WT after the 15% PEG-6000 treatment. Altogether, the drought stress genes identified in this study represent useful gene resources for wheat breeding.


Assuntos
Secas , Triticum , Triticum/genética , Triticum/metabolismo , Melhoramento Vegetal , Perfilação da Expressão Gênica , RNA-Seq , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Transcriptoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
18.
Plant Biotechnol J ; 21(6): 1229-1239, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36794449

RESUMO

Wheat fixes CO2 by photosynthesis into kernels to nourish humankind. Improving the photosynthesis rate is a major driving force in assimilating atmospheric CO2 and guaranteeing food supply for human beings. Strategies for achieving the above goal need to be improved. Here, we report the cloning and mechanism of CO2 ASSIMILATION RATE AND KERNEL-ENHANCED 1 (CAKE1) from durum wheat (Triticum turgidum L. var. durum). The cake1 mutant displayed a lower photosynthesis rate with smaller grains. Genetic studies identified CAKE1 as HSP90.2-B, encoding cytosolic molecular chaperone folding nascent preproteins. The disturbance of HSP90.2 decreased leaf photosynthesis rate, kernel weight (KW) and yield. Nevertheless, HSP90.2 over-expression increased KW. HSP90.2 recruited and was essential for the chloroplast localization of nuclear-encoded photosynthesis units, for example PsbO. Actin microfilaments docked on the chloroplast surface interacted with HSP90.2 as a subcellular track towards chloroplasts. A natural variation in the hexaploid wheat HSP90.2-B promoter increased its transcription activity, enhanced photosynthesis rate and improved KW and yield. Our study illustrated an HSP90.2-Actin complex sorting client preproteins towards chloroplasts to promote CO2 assimilation and crop production. The beneficial haplotype of Hsp90.2 is rare in modern varieties and could be an excellent molecular switch promoting photosynthesis rate to increase yield in future elite wheat varieties.


Assuntos
Dióxido de Carbono , Triticum , Humanos , Triticum/genética , Fotossíntese/genética , Folhas de Planta , Grão Comestível
19.
Plant Biotechnol J ; 21(6): 1159-1175, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36752567

RESUMO

Grain size and filling are two key determinants of grain thousand-kernel weight (TKW) and crop yield, therefore they have undergone strong selection since cereal was domesticated. Genetic dissection of the two traits will improve yield potential in crops. A quantitative trait locus significantly associated with wheat grain TKW was detected on chromosome 7AS flanked by a simple sequence repeat marker of Wmc17 in Chinese wheat 262 mini-core collection by genome-wide association study. Combined with the bulked segregant RNA-sequencing (BSR-seq) analysis of an F2 genetic segregation population with extremely different TKW traits, a candidate trehalose-6-phosphate phosphatase gene located at 135.0 Mb (CS V1.0), designated as TaTPP-7A, was identified. This gene was specifically expressed in developing grains and strongly influenced grain filling and size. Overexpression (OE) of TaTPP-7A in wheat enhanced grain TKW and wheat yield greatly. Detailed analysis revealed that OE of TaTPP-7A significantly increased the expression levels of starch synthesis- and senescence-related genes involved in abscisic acid (ABA) and ethylene pathways. Moreover, most of the sucrose metabolism and starch regulation-related genes were potentially regulated by SnRK1. In addition, TaTPP-7A is a crucial domestication- and breeding-targeted gene and it feedback regulates sucrose lysis, flux, and utilization in the grain endosperm mainly through the T6P-SnRK1 pathway and sugar-ABA interaction. Thus, we confirmed the T6P signalling pathway as the central regulatory system for sucrose allocation and source-sink interactions in wheat grains and propose that the trehalose pathway components have great potential to increase yields in cereal crops.


Assuntos
Ácido Abscísico , Grão Comestível , Ácido Abscísico/metabolismo , Grão Comestível/genética , Grão Comestível/metabolismo , Triticum/genética , Triticum/metabolismo , Açúcares/metabolismo , Retroalimentação , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Sacarose/metabolismo , Amido/metabolismo
20.
Plant Commun ; 4(4): 100556, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-36739481

RESUMO

The centromere is the region of a chromosome that directs its separation and plays an important role in cell division and reproduction of organisms. Elucidating the dynamics of centromeres is an alternative strategy for exploring the evolution of wheat. Here, we comprehensively analyzed centromeres from the de novo-assembled common wheat cultivar Aikang58 (AK58), Chinese Spring (CS), and all sequenced diploid and tetraploid ancestors by chromatin immunoprecipitation sequencing, whole-genome bisulfite sequencing, RNA sequencing, assay for transposase-accessible chromatin using sequencing, and comparative genomics. We found that centromere-associated sequences were concentrated during tetraploidization and hexaploidization. Centromeric repeats of wheat (CRWs) have undergone expansion during wheat evolution, with strong interweaving between the A and B subgenomes post tetraploidization. We found that CENH3 prefers to bind with younger CRWs, as directly supported by immunocolocalization on two chromosomes (1A and 2A) of wild emmer wheat with dicentromeric regions, only one of which bound with CENH3. In a comparison of AK58 with CS, obvious centromere repositioning was detected on chromosomes 1B, 3D, and 4D. The active centromeres showed a unique combination of lower CG but higher CHH and CHG methylation levels. We also found that centromeric chromatin was more open than pericentromeric chromatin, with higher levels of gene expression but lower gene density. Frequent introgression between tetraploid and hexaploid wheat also had a strong influence on centromere position on the same chromosome. This study also showed that active wheat centromeres were genetically and epigenetically determined.


Assuntos
Tetraploidia , Triticum , Triticum/genética , Centrômero/genética , Cromatina , Sequência de Bases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA