RESUMO
The transcription factor STAT3 is a promising target for the treatment of non-small cell lung cancer (NSCLC). STAT3 activity is mainly dependent on phosphorylation at tyrosine 705 (pSTAT3-Y705), but the modulation on pSTAT3-Y705 is elusive. By screening a library of deubiquitinases (Dubs), we found that the Otub1 increases STAT3 transcriptional activity. As a Dub, Otub1 binds to pSTAT3-Y705 and specifically abolishes its K48-linked ubiquitination, therefore preventing its degradation and promoting NSCLC cell survival. The Otub1/pSTAT3-Y705 axis could be a potential target for the treatment of NSCLC. To explore this concept, we screen libraries of FDA-approved drugs and natural products based on STAT3-recognition element-driven luciferase assay, from which crizotinib is found to block pSTAT3-Y705 deubiquitination and promotes its degradation. Different from its known action to induce ALK positive NSCLC cell apoptosis, crizotinib suppresses ALK-intact NSCLC cell proliferation and colony formation but not apoptosis. Furthermore, crizotinib also suppresses NSCLC xenograft growth in mice. Taken together, these findings identify Otub1 as the first deubiquitinase of pSTAT3-Y705 and provide that the Otub1/pSTAT3-Y705 axis is a promising target for the treatment of NSCLC.
RESUMO
The AT-hook motif nuclear-localized (AHL) family is pivotal for the abiotic stress response in plants. However, the function of the cassava AHL genes has not been elucidated. Promoters, as important regulatory elements of gene expression, play a crucial role in stress resistance. In this study, the promoter of the cassava MeAHL31 gene was cloned. The MeAHL31 protein was localized to the cytoplasm and the nucleus. qRT-PCR analysis revealed that the MeAHL31 gene was expressed in almost all tissues tested, and the expression in tuber roots was 321.3 times higher than that in petioles. Promoter analysis showed that the MeAHL31 promoter contains drought, methyl jasmonate (MeJA), abscisic acid (ABA), and gibberellin (GA) cis-acting elements. Expression analysis indicated that the MeAHL31 gene is dramatically affected by treatments with salt, drought, MeJA, ABA, and GA3. Histochemical staining in the proMeAHL31-GUS transgenic Arabidopsis corroborated that the GUS staining was found in most tissues and organs, excluding seeds. Beta-glucuronidase (GUS) activity assays showed that the activities in the proMeAHL31-GUS transgenic Arabidopsis were enhanced by different concentrations of NaCl, mannitol (for simulating drought), and MeJA treatments. The integrated findings suggest that the MeAHL31 promoter responds to the abiotic stresses of salt and drought, and its activity is regulated by the MeJA hormone signal.
Assuntos
Arabidopsis , Regulação da Expressão Gênica de Plantas , Manihot , Reguladores de Crescimento de Plantas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Estresse Fisiológico , Arabidopsis/genética , Arabidopsis/metabolismo , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico/genética , Manihot/genética , Manihot/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Secas , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Oxilipinas/farmacologia , Oxilipinas/metabolismo , Acetatos/farmacologiaRESUMO
The 2,7-fluorenone-linked bis(6-imidazo[1,5-a]pyridinium) salt H2-1(PF6)2 reacts with Ag2O in CH3CN to yield the [2]catenane [Ag4(1)4](PF6)4. The [2]catenane rearranges in DMF to yield two metallamacrocycles [Ag2(1)2](PF6)2. 2,7-Fluorenone-bridged bis-(imidazolium) salts H2-L(PF6)2 (L=2 a, 2 b) react with Ag2O in CH3CN to yield metallamacrocycles [Ag2(L)2](PF6)2 with interplanar distances between the fluorenone rings too small for [2]catenane formation. Intra- and intermolecular πâ â â π interactions between the fluorenone groups were observed by X-ray crystallography. The strongly kinked 2,7-fluorenone bridged bis(5-imidazo[1,5-a]pyridinium) salt H2-4(PF6)2 reacts with Ag2O to yield [Ag2(4)(CN)](PF6), while the tetranuclear assembly [Ag4(4)2(CO3)](PF6)2 was obtained in the presence of K2CO3.
RESUMO
OBJECTIVE: To study the effect of Shexiang Tongxin Dropping Pill (STDP) on angiogenesis in diabetic cardiomyopathy mice with coronary microcirculation dysfunction (CMD). METHODS: According to a random number table, 6 of 36 SPF male C57BL/6 mice were randomly selected as the control group, and the remaining 30 mice were injected with streptozotocin intraperitoneally to replicate the type 1 diabetes model. Mice successfully copied the diabetes model were randomly divided into the model group, STDP low-dose group [15 mg/(kg·d)], medium-dose group [30 mg/(kg·d)], high-dose group [60 mg/(kg·d)], and nicorandil group [15 mg/(kg·d)], 6 in each group. The drug was given by continuous gavage for 12 weeks. The cardiac function of mice in each group was detected at the end of the experiment, and coronary flow reserve (CFR) was detected by chest Doppler technique. Pathological changes of myocardium were observed by hematoxylin-eosin staining, collagen fiber deposition was detected by masson staining, the number of myocardial capillaries was detected by platelet endothelial cell adhesion molecule-1 staining, and the degree of myocardial hypertrophy was detected by wheat germ agglutinin staining. The expression of the vascular endothlial growth factor (VEGF)/endothelial nitric oxide synthase (eNOS) signaling pathway-related proteins in myocardial tissue was detected by Western blot. RESULTS: Compared with the model group, medium- and high-dose STDP significantly increased the left ventricular ejection fraction and left ventricular fraction shortening (P<0.01), obviously repaired the disordered cardiac muscle structure, reduced myocardial fibrosis, reduced myocardial cell area, increased capillary density, and increased CFR level (all P<0.01). Western blot showed that high-dose STDP could significantly increase the expression of VEGF and promote the phosphorylation of vascular endothelial growth factor receptor 2, phosphoinositide 3-kinase, protein kinase B, and eNOS (P<0.05 or P<0.01). CONCLUSION: STDP has a definite therapeutic effect on diabetic CMD, and its mechanism may be related to promoting angiogenesis through the VEGF/eNOS signaling pathway.
Assuntos
Medicamentos de Ervas Chinesas , Camundongos Endogâmicos C57BL , Microcirculação , Óxido Nítrico Sintase Tipo III , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular , Animais , Medicamentos de Ervas Chinesas/farmacologia , Óxido Nítrico Sintase Tipo III/metabolismo , Masculino , Transdução de Sinais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Microcirculação/efeitos dos fármacos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Miocárdio/patologia , Miocárdio/metabolismo , Circulação Coronária/efeitos dos fármacos , Camundongos , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/fisiopatologia , AngiogêneseRESUMO
Precise regulation of the active site structure is an important means to enhance the activity and selectivity of catalysts in CO2 electroreduction. Here, we creatively introduce anionic groups, which can not only stabilize metal sites with strong coordination ability but also have rich interactions with protons at active sites to modify the electronic structure and proton transfer process of catalysts. This strategy helps to convert CO2 into fuel chemicals at low overpotentials. As a typical example, a composite catalyst, CuO/Cu-NSO4/CN, with highly dispersed Cu(II)-SO4 sites has been reported, in which CO2 electroreduction to formate occurs at a low overpotential with a high Faradaic efficiency (-0.5â V vs. RHE, FEformate=87.4 %). Pure HCOOH is produced with an energy conversion efficiency of 44.3 % at a cell voltage of 2.8â V. Theoretical modeling demonstrates that sulfate promotes CO2 transformation into a carboxyl intermediate followed by HCOOH generation, whose mechanism is significantly different from that of the traditional process via a formate intermediate for HCOOH production.
RESUMO
A series of [2]catenanes has been prepared from di-NHC building blocks by utilizing solvophobic effects and/or πâ â â π stacking interactions. The dinickel naphthobiscarbene complex syn-[1] and the kinked biphenyl-bridged bipyridyl ligand L2 yield the [2]catenane [2-IL](OTf)4 by self-assembly. Solvophobic effects are pivotal for the formation of the interlocked species. Substitution of the biphenyl-linker in L2 for a pyromellitic diimide group gave ligand L3 , which yielded in combination with syn-[1] the [2]catenane [3-IL](OTf)4 . This assembly exhibits enhanced stability in diluted solution, aided by additional πâ â â π stacking interactions. The πâ â â π stacking was augmented by the introduction of a pyrene bridge between two NHC donors in ligand L4 . Di-NHC precursor H2 -L4 (PF6 )2 reacts with Ag2 O to give the [Ag2 L4 2 ]2 [2]catenane [4-IL](PF6 )4 , which shows strong πâ â â π stacking interactions between the pyrene groups. This assembly was readily converted into the [Au2 L4 2 ]2 gold species [5-IL](PF6 )4 , which exhibits exceptional stability based on the strong πâ â â π stacking interactions and the enhanced stability of the Au-CNHC bonds.
RESUMO
Two oxygenated ergostane-type steroids including one new compound, 3ß-hydroxy-5α,6ß-methoxyergosta-7,22-dien-15-one (1) along with a known analogue ergosta-6,22-dien-3ß,5α,8α-triol (2) were isolated from the crude extracts of the marine sponge-derived fungus Aspergillus sp. Their structures were elucidated on the basis of combined NMR and MS spectroscopic methods. Compound 1 was a marine ergostane-type steroid with two methoxy groups at C-5 and C-6, respectively. These oxygenated ergostane-type steroids were evaluated for their antibacterial activities against human or aquatic pathogens. Among them, compound 1 exhibited antibacterial activity against Staphylococcus aureus.
RESUMO
Deciphering the three-dimensional atomic structure of solid-solid interfaces in core-shell nanomaterials is the key to understand their catalytical, optical and electronic properties. Here, we probe the three-dimensional atomic structures of palladium-platinum core-shell nanoparticles at the single-atom level using atomic resolution electron tomography. We quantify the rich structural variety of core-shell nanoparticles with heteroepitaxy in 3D at atomic resolution. Instead of forming an atomically-sharp boundary, the core-shell interface is found to be atomically diffuse with an average thickness of 4.2 Å, irrespective of the particle's morphology or crystallographic texture. The high concentration of Pd in the diffusive interface is highly related to the free Pd atoms dissolved from the Pd seeds, which is confirmed by atomic images of Pd and Pt single atoms and sub-nanometer clusters using cryogenic electron microscopy. These results advance our understanding of core-shell structures at the fundamental level, providing potential strategies into precise nanomaterial manipulation and chemical property regulation.
RESUMO
Multiple triggered-release strategies are widely utilized to control the release of caged target molecules. Among them, photocages with conditional triggers provide extra layers of control in photorelease. In this work, a series of pH-responsive photocages was designed that could be triggered under irradiation and specific intracellular pH values. pH-sensitive phenolic groups were conjugated with o-nitrobenzyl (oNB) to form azo-phenolic NPX photocages with tunable pKa. These azo-phenol-based oNB photocages showed differentiable photoreleasing profiles at pHâ 5.0, 7.2 and 9.0. By attaching fluorogenic cargos, it was shown that one of the photocages, NPdiCl, could be used to differentiate between acidic pHâ 5.0 and neutral pHâ 7.2 in cells under artificial pH conditions. Finally, NPdiCl was identified as a promising pH-responsive photocage for photoreleasing cargo inside acidic tumor cells.
Assuntos
Fenol , Fenóis , Concentração de Íons de Hidrogênio , Compostos Azo/químicaRESUMO
Triarylborane-based discrete metal-carbene supramolecular cages [M3(1)2](PF6)3 (M = Ag, Au) were synthesized and characterized. The new hexacarbene assemblies show a significant solvatochromic effect in solvents of different polarity. Furthermore, the reversible fluoride binding property of [Au3(1)2](PF6)3 was investigated by UV-vis absorption and fluorescence titrations. This work holds promise for future developments in the area of highly emissive and stimulus-responsive NHC-metal assemblies.
RESUMO
Although grain size is an important quantitative trait affecting rice yield and quality, there are few studies on gene-by-environment interactions (GEIs) in genome-wide association studies, especially, in main crop (MC) and ratoon rice (RR). To address these issues, the phenotypes for grain width (GW), grain length (GL), and thousand grain weight (TGW) of 159 accessions of MC and RR in two environments were used to associate with 2,017,495 SNPs for detecting quantitative trait nucleotides (QTNs) and QTN-by-environment interactions (QEIs) using 3VmrMLM. As a result, 64, 71, 67, 72, 63, and 56 QTNs, and 0, 1, 2, 2, 2, and 1 QEIs were found to be significantly associated with GW in MC (GW-MC), GL-MC, TGW-MC, GW-RR, GL-RR, and TGW-RR, respectively. 3, 4, 7, 2, 2, and 4 genes were found to be truly associated with the above traits, respectively, while 2 genes around the above QEIs were found to be truly associated with GL-RR, and one of the two known genes was differentially expressed under two soil moisture conditions. 10, 7, 1, 8, 4, and 3 candidate genes were found by differential expression and GO annotation analysis to be around the QTNs for the above traits, respectively, in which 6, 3, 1, 2, 0, and 2 candidate genes were found to be significant in haplotype analysis. The gene Os03g0737000 around one QEI for GL-MC was annotated as salt stress related gene and found to be differentially expressed in two cultivars with different grain sizes. Among all the candidate genes around the QTNs in this study, four were key, in which two were reported to be truly associated with seed development, and two (Os02g0626100 for GL-MC and Os02g0538000 for GW-MC) were new. Moreover, 1, 2, and 1 known genes, along with 8 additional candidate genes and 2 candidate GEIs, were found to be around QTNs and QEIs for GW, GL, and TGW, respectively in MC and RR joint analysis, in which 3 additional candidate genes were key and new. Our results provided a solid foundation for genetic improvement and molecular breeding in MC and RR.
RESUMO
As an indigenous breed, the Tibetan chicken is found in highland regions and shows physiological adaptations to high altitude; however, the genetic changes that determine these adaptations remain elusive. We assumed that the microevolution of the Tibetan chicken occurred from lowland to highland regions with a continuous elevation range. In this study, we analyzed the genome of 188 chickens from lowland areas to the high-altitude regions of the Tibetan plateau with four altitudinal levels. Phylogenetic analysis revealed that Tibetan chickens are significantly different from other altitude chicken populations. Reconstruction of the demographic history showed that the migration and admixture events of the Tibetan chicken occurred at different times. The genome of the Tibetan chicken was also used to analyze positive selection pressure that is associated with high-altitude adaptation, revealing the well-known candidate gene that participates in oxygen binding (HBAD), as well as other novel potential genes (e.g., HRG and ANK2) that are related to blood coagulation and cardiovascular efficiency. Our study provides novel insights regarding the evolutionary history and microevolution mechanisms of the high-altitude adaptation in the Tibetan chicken.
RESUMO
Single-atom catalysts (SACs) exhibit distinct catalytic behavior compared with nano-catalysts because of their unique atomic coordination environment without the direct bonding between identical metal centers. How these single atom sites interact with each other and influence the catalytic performance remains unveiled as designing densely populated but stable SACs is still an enormous challenge to date. Here, a fabrication strategy for embedding high areal density single-atom Pt sites via a defect engineering approach is demonstrated. Similar to the synergistic mechanism in binuclear homogeneous catalysts, from both experimental and theoretical results, it is proved that electrons would redistribute between the two oxo-bridged paired Pt sites after hydrogen adsorption on one site, which enables the other Pt site to have high CO oxidation activity at mild-temperature. The dynamic electronic interaction between neighboring Pt sites is found to be distance dependent. These new SACs with abundant Pt-O-Pt paired structures can improve the efficiency of CO chemical purification.
Assuntos
Eletrônica , Rios , Adsorção , Catálise , ElétronsRESUMO
BACKGROUND: The yield and quality of soybean oil are determined by seed oil-related traits, and metabolites/lipids act as bridges between genes and traits. Although there are many studies on the mode of inheritance of metabolites or traits, studies on multi-dimensional genetic network (MDGN) are limited. RESULTS: In this study, six seed oil-related traits, 59 metabolites, and 107 lipids in 398 recombinant inbred lines, along with their candidate genes and miRNAs, were used to construct an MDGN in soybean. Around 175 quantitative trait loci (QTLs), 36 QTL-by-environment interactions, and 302 metabolic QTL clusters, 70 and 181 candidate genes, including 46 and 70 known homologs, were previously reported to be associated with the traits and metabolites, respectively. Gene regulatory networks were constructed using co-expression, protein-protein interaction, and transcription factor binding site and miRNA target predictions between candidate genes and 26 key miRNAs. Using modern statistical methods, 463 metabolite-lipid, 62 trait-metabolite, and 89 trait-lipid associations were found to be significant. Integrating these associations into the above networks, an MDGN was constructed, and 128 sub-networks were extracted. Among these sub-networks, the gene-trait or gene-metabolite relationships in 38 sub-networks were in agreement with previous studies, e.g., oleic acid (trait)-GmSEI-GmDGAT1a-triacylglycerol (16:0/18:2/18:3), gene and metabolite in each of 64 sub-networks were predicted to be in the same pathway, e.g., oleic acid (trait)-GmPHS-D-glucose, and others were new, e.g., triacylglycerol (16:0/18:1/18:2)-GmbZIP123-GmHD-ZIPIII-10-miR166s-oil content. CONCLUSIONS: This study showed the advantages of MGDN in dissecting the genetic relationships between complex traits and metabolites. Using sub-networks in MGDN, 3D genetic sub-networks including pyruvate/threonine/citric acid revealed genetic relationships between carbohydrates, oil, and protein content, and 4D genetic sub-networks including PLDs revealed the relationships between oil-related traits and phospholipid metabolism likely influenced by the environment. This study will be helpful in soybean quality improvement and molecular biological research.
RESUMO
Recently, metal-organic framework (MOF)-based photocatalysts for an efficient CO2 reduction reaction have drawn wide attention in multidisciplinary fields and sustainable chemistry. In this work, a series of Cu2+-doped two-dimensional Ti-based MOFs were fabricated by a facile in situ solvothermal method. Cu2+ ions were doped in equal proportions and uniformly dispersed in the crystal structure of the MOF matrix. Interestingly, the doping content of Cu2+ ions and the photocatalytic performance displayed an obvious volcanic relationship, the medium-concentration Cu2+-doped sample (T1-2Cu) held the greatest activity with 100% carbonaceous product (CH4 and CO) formation, and the CH4 production rate was 3.7 µmol g-1 h-1 with 93% electron selectivity. The band structure, local electronic structure, carrier separation kinetics, and CO2 adsorption studies demonstrated that the excellent photocatalytic activity of T1-2Cu benefited from the appropriate amount of Cu2+ ion doping: (1) a doping amount of 2 atom % optimized the conduction band position of the MOF substrate and endowed T1-2Cu with strong reduction potential in thermodynamics, (2) doping Cu2+ ions tuned the local electronic environment around titanium oxide clusters and optimized the generation, separation, and migration processes of photoinduced carriers, and (3) the introduction of Cu2+ ions also provided more accessible active sites and more probabilities for the adsorption and activation of CO2 reactants.
RESUMO
Theoretical and applied studies demonstrate the difficulty of detecting extremely over-dominant and small-effect genes for quantitative traits via bulked segregant analysis (BSA) in an F2 population. To address this issue, we proposed an integrated strategy for mapping various types of quantitative trait loci (QTLs) for quantitative traits via a combination of BSA and whole-genome sequencing. In this strategy, the numbers of read counts of marker alleles in two extreme pools were used to predict the numbers of read counts of marker genotypes. These observed and predicted numbers were used to construct a new statistic, Gw, for detecting quantitative trait genes (QTGs), and the method was named dQTG-seq1. This method was significantly better than existing BSA methods. If the goal was to identify extremely over-dominant and small-effect genes, another reserved DNA/RNA sample from each extreme phenotype F2 plant was sequenced, and the observed numbers of marker alleles and genotypes were used to calculate Gw to detect QTGs; this method was named dQTG-seq2. In simulated and real rice dataset analyses, dQTG-seq2 could identify many more extremely over-dominant and small-effect genes than BSA and QTL mapping methods. dQTG-seq2 may be extended to other heterogeneous mapping populations. The significance threshold of Gw in this study was determined by permutation experiments. In addition, a handbook for the R software dQTG.seq, which is available at https://cran.r-project.org/web/packages/dQTG.seq/index.html, has been provided in the supplemental materials for the users' convenience. This study provides a new strategy for identifying all types of QTLs for quantitative traits in an F2 population.
Assuntos
Oryza , Locos de Características Quantitativas , Mapeamento Cromossômico/métodos , Genótipo , Oryza/genética , Fenótipo , Locos de Características Quantitativas/genéticaRESUMO
Although genome-wide association studies are widely used to mine genes for quantitative traits, the effects to be estimated are confounded, and the methodologies for detecting interactions are imperfect. To address these issues, the mixed model proposed here first estimates the genotypic effects for AA, Aa, and aa, and the genotypic polygenic background replaces additive and dominance polygenic backgrounds. Then, the estimated genotypic effects are partitioned into additive and dominance effects using a one-way analysis of variance model. This strategy was further expanded to cover QTN-by-environment interactions (QEIs) and QTN-by-QTN interactions (QQIs) using the same mixed-model framework. Thus, a three-variance-component mixed model was integrated with our multi-locus random-SNP-effect mixed linear model (mrMLM) method to establish a new methodological framework, 3VmrMLM, that detects all types of loci and estimates their effects. In Monte Carlo studies, 3VmrMLM correctly detected all types of loci and almost unbiasedly estimated their effects, with high powers and accuracies and a low false positive rate. In re-analyses of 10 traits in 1439 rice hybrids, detection of 269 known genes, 45 known gene-by-environment interactions, and 20 known gene-by-gene interactions strongly validated 3VmrMLM. Further analyses of known genes showed more small (67.49%), minor-allele-frequency (35.52%), and pleiotropic (30.54%) genes, with higher repeatability across datasets (54.36%) and more dominance loci. In addition, a heteroscedasticity mixed model in multiple environments and dimension reduction methods in quite a number of environments were developed to detect QEIs, and variable selection under a polygenic background was proposed for QQI detection. This study provides a new approach for revealing the genetic architecture of quantitative traits.
Assuntos
Estudo de Associação Genômica Ampla , Oryza , Estudo de Associação Genômica Ampla/métodos , Genótipo , Herança Multifatorial/genética , Oryza/genética , FenótipoRESUMO
Liver fibrosis is a major global health concern. Management of chronic liver disease is severely restricted in clinics due to ineffective treatment approaches. However, a lack of targeted therapy may aggravate this condition. Asiatic acid (AA), a pentacyclic triterpenoid acid, can effectively protect the liver from hepatic disorders. However, the pharmaceutical application of AA is limited by low oral bioavailability and poor targeting efficiency. This study synthesized a novel liver-targeting material from PEG-SA, chemically linked to ursodeoxycholic acid (UA), and utilized it to modify AA nanostructured lipid carriers (UP-AA-NLC) with enhanced targeting and improved efficacy. The formulation of UP-AA-NLC was optimized via the Box-Behnken Experimental Design (BBD) and characterized by size, zeta potential, TEM, DSC, and XRD. Furthermore, in vitro antifibrotic activity and proliferation of AA and NLCs were assessed in LX-2 cells. The addition of UP-AA-NLC significantly stimulated the TGF-beta1-induced expression of α-SMA, FN1, and Col I α1. In vivo near-infrared fluorescence imaging and distribution trials in rats demonstrated that UP-AA-NLC could significantly improve oral absorption and liver-targeting efficiency. Oral UP-AA-NLC greatly alleviated carbon tetrachloride-induced liver injury and fibrosis in rats in a dosage-dependent manner, as reflected by serum biochemical parameters (AST, ALT, and ALB), histopathological features (H&E and Masson staining), and antioxidant activity parameters (SOD and MDA). Also, treatment with UP-AA-NLC lowered liver hydroxyproline levels, demonstrating a reduction of collagen accumulation in the fibrotic liver. Collectively, optimized UP-AA-NLC has potential application prospects in liver-targeted therapy and holds great promise as a drug delivery system for treating liver diseases.