Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cancer Res ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536116

RESUMO

Aspirin has shown potential for cancer prevention, but a recent large randomized controlled trial found no evidence for a reduction in cancer risk. Given the anti-inflammatory effects of aspirin, systemic inflammatory diseases (SIDs), such as osteoporosis, cardiovascular diseases, and metabolic diseases, could potentially modify the aspirin-cancer link. To investigate the impact of aspirin in people with SIDs, we conducted an observational study on a prospective cohort of 478,615 UK Biobank participants. Individuals with at least one of the 41 SIDs displayed a higher cancer risk than those without SIDs. Regular aspirin use showed protective effects exclusively in patients with SID, contrasting an elevated risk among their non-SID counterparts. Nonetheless, aspirin use demonstrated preventative potential only for 9 of 21 SID-associated cancer subtypes. Cholesterol emerged as another key mediator linking SIDs to cancer risk. Notably, regular statin use displayed protective properties in patients with SID but not in their non-SID counterparts. Concurrent use of aspirin and statins exhibited a stronger protective association in patients with SID, covering 14 common cancer subtypes. In summary, patients with SIDs may represent a population particularly responsive to regular aspirin and statin use. Promoting either combined or individual use of these medications within the context of SIDs could offer a promising chemoprevention strategy.

2.
Nat Commun ; 14(1): 1247, 2023 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-36871040

RESUMO

Liver kinase B1 (LKB1) mutation is prevalent and a driver of resistance to immune checkpoint blockade (ICB) therapy for lung adenocarcinoma. Here leveraging single cell RNA sequencing data, we demonstrate that trafficking and adhesion process of activated T cells are defected in genetically engineered Kras-driven mouse model with Lkb1 conditional knockout. LKB1 mutant cancer cells result in marked suppression of intercellular adhesion molecule-1 (ICAM1). Ectopic expression of Icam1 in Lkb1-deficient tumor increases homing and activation of adoptively transferred SIINFEKL-specific CD8+ T cells, reactivates tumor-effector cell interactions and re-sensitises tumors to ICB. Further discovery proves that CDK4/6 inhibitors upregulate ICAM1 transcription by inhibiting phosphorylation of retinoblastoma protein RB in LKB1 deficient cancer cells. Finally, a tailored combination strategy using CDK4/6 inhibitors and anti-PD-1 antibodies promotes ICAM1-triggered immune response in multiple Lkb1-deficient murine models. Our findings renovate that ICAM1 on tumor cells orchestrates anti-tumor immune response, especially for adaptive immunity.


Assuntos
Molécula 1 de Adesão Intercelular , Neoplasias Pulmonares , Animais , Camundongos , Linfócitos T CD8-Positivos , Imunoterapia , Proteínas Serina-Treonina Quinases , Imunidade Adaptativa
3.
BMC Med ; 21(1): 6, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36600276

RESUMO

BACKGROUND: Immune checkpoint inhibitor (ICI) therapy combined with conventional therapies is being broadly applied in non-small cell lung cancer (NSCLC) patients. However, the risk of interstitial pneumonitis (IP) following a combined regimen is incompletely characterized. METHODS: A total of 46,127 NSCLC patients were extracted for disproportionality analyses of IP from the Food and Drug Administration's Adverse Event Reporting System (FAERS) database. A total of 1108 NSCLC patients who received ICI treatment at Nanfang Hospital of Southern Medical University were collected and utilized for real-world validation. RESULTS: Of the 46,127 patients with NSCLC, 3830 cases (8.3%; 95% confidence interval [CI], 8.05-8.56) developed IP. Multivariable logistic regression analyses revealed that the adjusted ROR of ICI combined with radiation (RT) was the highest (121.69; 95% CI, 83.60-184.96; P < 0.0001) among all therapies, while that of ICI combined with chemotherapy (CHEMO) or targeted therapy (TARGET) was 0.90 (95% CI, 0.78-1.04; P = 0.160) and 1.49 (95% CI, 0.95-2.23; P = 0.065), respectively, using ICI monotherapy as reference. Furthermore, analyses from our validation cohort of 1108 cases showed that the adjusted odds ratio of ICI combined with RT was the highest (12.25; 95% CI, 3.34-50.22; P < 0.01) among all the therapies, while that of ICI combined with CHEMO or TARGET was 2.32 (95% CI, 0.89-7.92; P = 0.12) and 0.66 (95% CI, 0.03-4.55; P = 0.71), respectively, using ICI monotherapy as reference. CONCLUSIONS: Compared with ICI monotherapy, ICI combined with RT, rather than with CHEMO or TARGET, is associated with a higher risk of IP in NSCLC patients. Hence, patients receiving these treatments should be carefully monitored for IP.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Doenças Pulmonares Intersticiais , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Farmacovigilância , Imunoterapia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Doenças Pulmonares Intersticiais/epidemiologia , Doenças Pulmonares Intersticiais/tratamento farmacológico , Doenças Pulmonares Intersticiais/etiologia , Estudos Retrospectivos
4.
Cancer Res ; 83(4): 568-581, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36512628

RESUMO

Contradictory characteristics of elevated mutational burden and a "cold" tumor microenvironment (TME) coexist in liver kinase B1 (LKB1)-mutant non-small cell lung cancers (NSCLC). The molecular basis underlying this paradox and strategies tailored to these historically difficult to treat cancers are lacking. Here, by mapping the single-cell transcriptomic landscape of genetically engineered mouse models with Kras versus Kras/Lkb1-driven lung tumors, we detected impaired tumor-intrinsic IFNγ signaling in Kras/Lkb1-driven tumors that explains the inert immune context. Mechanistic analysis showed that mutant LKB1 led to deficiency in the DNA damage repair process and abnormally activated PARP1. Hyperactivated PARP1 attenuated the IFNγ pathway by physically interacting with and enhancing the poly(ADP-ribosyl)ation of STAT1, compromising its phosphorylation and activation. Abrogation of the PARP1-driven program triggered synthetic lethality in NSCLC on the basis of the LKB1 mutation-mediated DNA repair defect, while also restoring phosphorylated STAT1 to favor an immunologically "hot" TME. Accordingly, PARP1 inhibition restored the disrupted IFNγ signaling and thus mounted an adaptive immune response to synergize with PD-1 blockade in multiple LKB1-deficient murine tumor models. Overall, this study reveals an unexplored interplay between the DNA repair process and adaptive immune response, providing a molecular basis for dual PARP1 and PD-1 inhibition in treating LKB1-mutant NSCLC. SIGNIFICANCE: Targeting PARP exerts dual effects to overcome LKB1 loss-driven immunotherapy resistance through triggering DNA damage and adaptive immunity, providing a rationale for dual PARP and PD-1 inhibition in treating LKB1-mutant lung cancers.


Assuntos
Imunidade Adaptativa , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Inibidores de Poli(ADP-Ribose) Polimerases , Animais , Camundongos , Imunidade Adaptativa/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Receptor de Morte Celular Programada 1/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Mutações Sintéticas Letais/efeitos dos fármacos , Microambiente Tumoral , Quinases Proteína-Quinases Ativadas por AMP/genética
5.
BMC Med ; 20(1): 120, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35410334

RESUMO

BACKGROUND: Organ-specific metastatic context has not been incorporated into the clinical practice of guiding programmed death-(ligand) 1 [PD-(L)1] blockade, due to a lack of understanding of its predictive versus prognostic value. We aim at delineating and then incorporating both the predictive and prognostic effects of the metastatic-organ landscape to dissect PD-(L)1 blockade efficacy in non-small cell lung cancer (NSCLC). METHODS: A total of 2062 NSCLC patients from a double-arm randomized trial (OAK), two immunotherapy trials (FIR, BIRCH), and a real-world cohort (NFyy) were included. The metastatic organs were stratified into two categories based on their treatment-dependent predictive significance versus treatment-independent prognosis. A metastasis-based scoring system (METscore) was developed and validated for guiding PD-(L)1 blockade in clinical trials and real-world practice. RESULTS: Patients harboring various organ-specific metastases presented significantly different responses to immunotherapy, and those with brain and adrenal gland metastases survived longer than others [overall survival (OS), p = 0.0105; progression-free survival (PFS), p = 0.0167]. In contrast, survival outcomes were similar in chemotherapy-treated patients regardless of metastatic sites (OS, p = 0.3742; PFS, p = 0.8242). Intriguingly, the immunotherapeutic predictive significance of the metastatic-organ landscape was specifically presented in PD-L1-positive populations (PD-L1 > 1%). Among them, a paradoxical coexistence of a favorable predictive effect coupled with an unfavorable prognostic effect was observed in metastases to adrenal glands, brain, and liver (category I organs), whereas metastases to bone, pleura, pleural effusion, and mediastinum yielded consistent unfavorable predictive and prognostic effects (category II organs). METscore was capable of integrating both predictive and prognostic effects of the entire landscape and dissected OS outcome of NSCLC patients received PD-(L)1 blockade (p < 0.0001) but not chemotherapy (p = 0.0805) in the OAK training cohort. Meanwhile, general performance of METscore was first validated in FIR (p = 0.0350) and BIRCH (p < 0.0001), and then in the real-world NFyy cohort (p = 0.0181). Notably, METscore was also applicable to patients received PD-(L)1 blockade as first-line treatment both in the clinical trials (OS, p = 0.0087; PFS, p = 0.0290) and in the real-world practice (OS, p = 0.0182; PFS, p = 0.0045). CONCLUSIONS: Organ-specific metastatic landscape served as a potential predictor of immunotherapy, and METscore might enable noninvasive forecast of PD-(L)1 blockade efficacy using baseline radiologic assessments in advanced NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Antígeno B7-H1 , Ensaios Clínicos como Assunto , Humanos , Imunoterapia , Neoplasias Pulmonares/patologia , Intervalo Livre de Progressão
6.
Front Oncol ; 11: 666145, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34221982

RESUMO

PURPOSE: Despite the success of targeted therapy in c-ros oncogene 1 (ROS1)-rearranged cancers, especially non-small cell lung cancer (NSCLC), the clinical significance of ROS1 de novo mutation has not yet been understood. We sought to elucidate the predictive effect of ROS1 mutation for immune checkpoint inhibitor (ICI) therapy in melanoma. METHODS: The Cancer Genome Atlas [TCGA (n = 10967)] and Memorial Sloan Kettering Cancer Center [MSK (n = 10,945)] datasets, as well as two clinical cohorts of melanoma received ICI [CA209-038 (n = 73) and MEL-IPI (n = 110)], were included to explore the prevalence, prognostic effect, and immunotherapeutic predictive effect of ROS1 mutation in melanoma. Overall survival (OS) was defined as the primary outcome. RESULTS: Overall, melanoma accounted for the highest proportion of ROS1 mutation (~20%) which made up the majority (~95%) of the ROS1-alterated cases. Remarkably, ROS1 mutation yielded longer OS from ICI than the wild-type counterpart in the MSK melanoma population [hazard ratio (HR) 0.47, 95% confidence interval (CI) 0.30-0.74], and two external melanoma cohorts (CA209-038: HR 0.42, 95% CI 0.20-0.89; MEL-IPI: HR 0.55, 95% CI 0.34-0.91), without affecting the prognosis of patients. Elevated tumor mutational burden and enrichment of DNA damage repair was observed in ROS1 mutated patients, providing an explanation for the favorable responses to ICI therapy. Precisely, ROS1 mutation in non-protein tyrosine kinase (PTK) domain but not PTK mutation was responsible for the immunotherapy-specific responses of the ROS1 mutated patients in melanoma. CONCLUSIONS: Collectively, ROS1 mutation, specifically the non-PTK mutation, is a potential predictor of ICI therapy in melanoma, which is distinct from the well-established role of ROS1 rearrangement for targeted therapy in NSCLC.

7.
Oncoimmunology ; 10(1): 1909296, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33996262

RESUMO

Objectives: Clinical benefits of immune-checkpoint blockade (ICB) versus standard chemotherapy have been established in unselected non-small cell lung cancer (NSCLC). However, the response to ICB therapy among patients is heterogeneous in clinical practice. Materials and Methods: We retrospectively assessed the predicitive effect of the primary and metastatic lesion spectrum (baseline sum of the longest diameters [SLD], number of metastatic sites and specific organ metastases) on the efficacy of atezolizumab over docetaxel in OAK and POPLAR trial cohorts. A decision model, termed DSO (Diameter-Site-Organ), based on the spectrum was developed and validated for guiding ICB. Results: Higher SLD (>38 mm) and more metastatic sites (≥2) were characterized with pronounced overall survival (OS) benefits from atezolizumab versus docetaxel. Specifically, adrenal gland and brain metastases were identified as favorable predictors of atezolizumab treatment. The DSO model was developed in the discovery cohort to integrate the directive effect of the primary and metastatic lesion spectrum. Remarkably, a general pattern of enhanced efficacy of atezolizumab versus docetaxel was observed along with the increase of the DSO score. For patients with DSO score > 0, atezolizumab yielded a significantly prolonged OS than docetaxel, whereas OS was generally similar between two treatments in patients with DSO score ≤ 0. Equivalent findings were also seen in the internal and external validation cohorts. Conclusions: The response to anti-PD-L1 therapy among patients varied with the primary and metastatic lesion spectrum. The DSO-based system might provide promising medication guidance for ICB treatment in NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Anticorpos Monoclonais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Docetaxel/uso terapêutico , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Estudos Retrospectivos
8.
EBioMedicine ; 57: 102880, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32645614

RESUMO

BACKGROUND: Information regarding risk factors associated with severe coronavirus disease (COVID-19) is limited. This study aimed to develop a model for predicting COVID-19 severity. METHODS: Overall, 690 patients with confirmed COVID-19 were recruited between 1 January and 18 March 2020 from hospitals in Honghu and Nanchang; finally, 442 patients were assessed. Data were categorised into the training and test sets to develop and validate the model, respectively. FINDINGS: A predictive HNC-LL (Hypertension, Neutrophil count, C-reactive protein, Lymphocyte count, Lactate dehydrogenase) score was established using multivariate logistic regression analysis. The HNC-LL score accurately predicted disease severity in the Honghu training cohort (area under the curve [AUC]=0.861, 95% confidence interval [CI]: 0.800-0.922; P<0.001); Honghu internal validation cohort (AUC=0.871, 95% CI: 0.769-0.972; P<0.001); and Nanchang external validation cohort (AUC=0.826, 95% CI: 0.746-0.907; P<0.001) and outperformed other models, including CURB-65 (confusion, uraemia, respiratory rate, BP, age ≥65 years) score model, MuLBSTA (multilobular infiltration, hypo-lymphocytosis, bacterial coinfection, smoking history, hypertension, and age) score model, and neutrophil-to-lymphocyte ratio model. The clinical significance of HNC-LL in accurately predicting the risk of future development of severe COVID-19 was confirmed. INTERPRETATION: We developed an accurate tool for predicting disease severity among COVID-19 patients. This model can potentially be used to identify patients at risks of developing severe disease in the early stage and therefore guide treatment decisions. FUNDING: This work was supported by the National Nature Science Foundation of China (grant no. 81972897) and Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (2015).


Assuntos
Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/patologia , Pneumonia Viral/diagnóstico , Pneumonia Viral/patologia , Índice de Gravidade de Doença , Betacoronavirus , Proteína C-Reativa/análise , COVID-19 , Síndrome da Liberação de Citocina/patologia , Feminino , Humanos , Hipertensão/patologia , L-Lactato Desidrogenase/análise , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Neutrófilos/citologia , Pandemias , Prognóstico , Estudos Retrospectivos , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA