Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Hortic Res ; 11(3): uhae006, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38559470

RESUMO

Leaf color is an important agronomic trait in cabbage (Brassica oleracea L. var. capitata), but the detailed mechanism underlying leaf color formation remains unclear. In this study, we characterized a Brassica oleracea yellow-green leaf 2 (BoYgl-2) mutant 4036Y, which has significantly reduced chlorophyll content and abnormal chloroplasts during early leaf development. Genetic analysis revealed that the yellow-green leaf trait is controlled by a single recessive gene. Map-based cloning revealed that BoYgl-2 encodes a novel nuclear-targeted P-type PPR protein, which is absent in the 4036Y mutant. Functional complementation showed that BoYgl-2 from the normal-green leaf 4036G can rescue the yellow-green leaf phenotype of 4036Y. The C-to-U editing efficiency and expression levels of atpF, rps14, petL and ndhD were significantly reduced in 4036Y than that in 4036G, and significantly increased in BoYgl-2 overexpression lines than that in 4036Y. The expression levels of many plastid- and nuclear-encoded genes associated with chloroplast development in BoYgl-2 mutant were also significantly altered. These results suggest that BoYgl-2 participates in chloroplast C-to-U editing and development, which provides rare insight into the molecular mechanism underlying leaf color formation in cabbage.

2.
Nat Genet ; 56(3): 517-529, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38351383

RESUMO

Brassica oleracea, globally cultivated for its vegetable crops, consists of very diverse morphotypes, characterized by specialized enlarged organs as harvested products. This makes B. oleracea an ideal model for studying rapid evolution and domestication. We constructed a B. oleracea pan-genome from 27 high-quality genomes representing all morphotypes and their wild relatives. We identified structural variations (SVs) among these genomes and characterized these in 704 B. oleracea accessions using graph-based genome tools. We show that SVs exert bidirectional effects on the expression of numerous genes, either suppressing through DNA methylation or promoting probably by harboring transcription factor-binding elements. The following examples illustrate the role of SVs modulating gene expression: SVs promoting BoPNY and suppressing BoCKX3 in cauliflower/broccoli, suppressing BoKAN1 and BoACS4 in cabbage and promoting BoMYBtf in ornamental kale. These results provide solid evidence for the role of SVs as dosage regulators of gene expression, driving B. oleracea domestication and diversification.


Assuntos
Brassica , Brassica/genética , Brassica/metabolismo , Genoma de Planta/genética , Expressão Gênica
3.
Plant Physiol Biochem ; 208: 108435, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38402798

RESUMO

Most plant transcriptomes constitute functional non-coding RNAs (ncRNAs) that lack the ability to encode proteins. In recent years, more research has demonstrated that ncRNAs play important regulatory roles in almost all plant biological processes by modulating gene expression. Thus, it is important to study the biogenesis and function of ncRNAs, particularly in plant growth and development and stress tolerance. In this review, we systematically explore the process of formation and regulatory mechanisms of ncRNAs, particularly those of microRNAs (miRNAs), small interfering RNAs (siRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Additionally, we provide a comprehensive overview of the recent advancements in ncRNAs research, including their regulation of plant growth and development (seed germination, root growth, leaf morphogenesis, floral development, and fruit and seed development) and responses to abiotic and biotic stress (drought, heat, cold, salinity, pathogens and insects). We also discuss research challenges and provide recommendations to advance the understanding of the roles of ncRNAs in agronomic applications.


Assuntos
MicroRNAs , Desenvolvimento Vegetal , RNA de Plantas/genética , RNA de Plantas/metabolismo , Desenvolvimento Vegetal/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Interferente Pequeno/metabolismo , Plantas/genética
4.
Plants (Basel) ; 12(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37836153

RESUMO

Flowering time is an important agronomic trait in cabbage (Brassica oleracea L. var. capitata), but the molecular regulatory mechanism underlying flowering time regulation in cabbage remains unclear. In this study, transcriptome analysis was performed using two sets of cabbage materials: (1) the early-flowering inbred line C491 (P1) and late-flowering inbred line B602 (P2), (2) the early-flowering individuals F2-B and late-flowering individuals F2-NB from the F2 population. The analysis revealed 9508 differentially expressed genes (DEGs) common to both C491_VS_ B602 and F2-B_VS_F2-NB. The Kyoto Encyclopedia of Genes and Genomes (KEGGs) analysis showed that plant hormone signal transduction and the MAPK signaling pathway were mainly enriched in up-regulated genes, and ribosome and DNA replication were mainly enriched in down-regulated genes. We identified 321 homologues of Arabidopsis flowering time genes (Ft) in cabbage. Among them, 25 DEGs (11 up-regulated and 14 down-regulated genes) were detected in the two comparison groups, and 12 gene expression patterns closely corresponded with the different flowering times in the two sets of materials. Two genes encoding MADS-box proteins, Bo1g157450 (BoSEP2-1) and Bo5g152700 (BoSEP2-2), showed significantly reduced expression in the late-flowering parent B602 compared with the early-flowering parent C491 via qRT-PCR analysis, which was consistent with the RNA-seq data. Next, the expression levels of Bo1g157450 (BoSEP2-1) and Bo5g152700 (BoSEP2-2) were analyzed in two other groups of early-flowering and late-flowering inbred lines, which showed that their expression patterns were consistent with those in the parents. Sequence analysis revealed that three and one SNPs between B602 and C491 were identified in Bo1g157450 (BoSEP2-1) and Bo5g152700 (BoSEP2-2), respectively. Therefore, BoSEP2-1 and BoSEP2-2 were designated as candidates for flowering time regulation through a potential new regulatory pathway. These results provide new insights into the molecular mechanisms underlying flowering time regulation in cabbage.

5.
Nat Commun ; 14(1): 6212, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798291

RESUMO

Male sterility has been used for crop hybrid breeding for a long time. It has contributed greatly to crop yield increase. However, the genetic basis of male sterility has not been fully elucidated. Here, we report map-based cloning of the cabbage (Brassica oleracea) dominant male-sterile gene Ms-cd1 and reveal that it encodes a PHD-finger motif transcription factor. A natural allele Ms-cd1PΔ-597, resulting from a 1-bp deletion in the promoter, confers dominant genic male sterility (DGMS), whereas loss-of-function ms-cd1 mutant shows recessive male sterility. We also show that the ethylene response factor BoERF1L represses the expression of Ms-cd1 by directly binding to its promoter; however, the 1-bp deletion in Ms-cd1PΔ-597 affects the binding. Furthermore, ectopic expression of Ms-cd1PΔ-597 confers DGMS in both dicotyledonous and monocotyledonous plant species. We thus propose that the DGMS system could be useful for breeding hybrids of multiple crop species.


Assuntos
Brassica , Infertilidade Masculina , Masculino , Humanos , Infertilidade das Plantas/genética , Melhoramento Vegetal , Brassica/genética , Mutação
6.
Hortic Res ; 10(8): uhad133, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37564271

RESUMO

Brassica oleracea comprises several important vegetable and ornamental crops, including curly kale, ornamental kale, cabbage, broccoli, and others. The accumulation of anthocyanins, important secondary metabolites valuable to human health, in these plants varies widely and is responsible for their pink to dark purple colors. Some curly kale varieties lack anthocyanins, making these plants completely green. The genetic basis of this trait is still unknown. We crossed the curly kale inbred line BK2019 (without anthocyanins) with the cabbage inbred line YL1 (with anthocyanins) and the Chinese kale inbred line TO1000 (with anthocyanins) to generate segregating populations. The no-anthocyanin trait was genetically controlled by a recessive gene, bona1. We generated a linkage map and mapped bona1 to a 256-kb interval on C09. We identified one candidate gene, Bo9g058630, in the target genomic region; this gene is homologous to AT5G42800, which encodes a dihydroflavonol-4-reductase-like (DFR-like) protein in Arabidopsis. In BK2019, a 1-bp insertion was observed in the second exon of Bo9g058630 and directly produced a stop codon. To verify the candidate gene function, CRISPR/Cas9 gene editing technology was applied to knock out Bo9g058630. We generated three bona1 mutants, two of which were completely green with no anthocyanins, confirming that Bo9g058630 corresponds to BoNA1. Different insertion/deletion mutations in BoNA1 exons were found in all six of the other no-anthocyanin kale varieties examined, supporting that independent disruption of BoNA1 resulted in no-anthocyanin varieties of B. oleracea. This study improves the understanding of the regulation mechanism of anthocyanin accumulation in B. oleracea subspecies.

7.
J Fungi (Basel) ; 9(8)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37623590

RESUMO

Hyaloperonospora parasitica is a global pathogen that can cause leaf necrosis and seedling death, severely threatening the quality and yield of cabbage. However, the genome sequence and infection mechanisms of H. parasitica are still unclear. Here, we present the first whole-genome sequence of H. parasitica isolate BJ2020, which causes downy mildew in cabbage. The genome contains 4631 contigs and 9991 protein-coding genes, with a size of 37.10 Mb. The function of 6128 genes has been annotated. We annotated the genome of H. parasitica strain BJ2020 using databases, identifying 2249 PHI-associated genes, 1538 membrane transport proteins, and 126 CAZy-related genes. Comparative analyses between H. parasitica, H.arabidopsidis, and H. brassicae revealed dramatic differences among these three Brassicaceae downy mildew pathogenic fungi. Comprehensive genome-wide clustering analysis of 20 downy mildew-causing pathogens, which infect diverse crops, elucidates the closest phylogenetic affinity between H. parasitica and H. brassicae, the causative agent of downy mildew in Brassica napus. These findings provide important insights into the pathogenic mechanisms and a robust foundation for further investigations into the pathogenesis of H. parasitica BJ2020.

8.
Int J Mol Sci ; 24(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37047676

RESUMO

Ogura cytoplasmic male sterility (CMS) lines are widely used breeding materials in cruciferous crops and play important roles in heterosis utilization; however, the sterility mechanism remains unclear. To investigate the microspore development process and gene expression changes after the introduction of orf138 and Rfo, cytological observation and transcriptome analysis were performed using a maintainer line, an Ogura CMS line, and a restorer line. Semithin sections of microspores at different developmental stages showed that the degradation of tapetal cells began at the tetrad stage in the Ogura CMS line, while it occurred at the bicellular microspore stage to the tricellular microspore stage in the maintainer and restorer lines. Therefore, early degradation of tapetal cells may be the cause of pollen abortion. Transcriptome analysis results showed that a total of 1287 DEGs had consistent expression trends in the maintainer line and restorer line, but were significantly up- or down-regulated in the Ogura CMS line, indicating that they may be closely related to pollen abortion. Functional annotation showed that the 1287 core DEGs included a large number of genes related to pollen development, oxidative phosphorylation, carbohydrate, lipid, and protein metabolism. In addition, further verification elucidated that down-regulated expression of genes related to energy metabolism led to decreased ATP content and excessive ROS accumulation in the anthers of Ogura CMS. Based on these results, we propose a transcriptome-mediated induction and regulatory network for cabbage Ogura CMS. Our research provides new insights into the mechanism of pollen abortion and fertility restoration in Ogura CMS.


Assuntos
Brassica , Transcriptoma , Brassica/genética , Infertilidade das Plantas/genética , Melhoramento Vegetal , Perfilação da Expressão Gênica/métodos , Citoplasma/genética , Citoplasma/metabolismo , Regulação da Expressão Gênica de Plantas
9.
Genes (Basel) ; 14(2)2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36833404

RESUMO

Cabbage (Brassica oleracea var. capitata) is a vegetable rich in glucosinolates (GSLs) that have proven health benefits. To gain insights into the synthesis of GSLs in cabbage, we systematically analyzed GSLs biosynthetic genes (GBGs) in the entire cabbage genome. In total, 193 cabbage GBGs were identified, which were homologous to 106 GBGs in Arabidopsis thaliana. Most GBGs in cabbage have undergone negative selection. Many homologous GBGs in cabbage and Chinese cabbage differed in expression patterns indicating the unique functions of these homologous GBGs. Spraying five exogenous hormones significantly altered expression levels of GBGs in cabbage. For example, MeJA significantly upregulated side chain extension genes BoIPMILSU1-1 and BoBCAT-3-1, and the expression of core structure construction genes BoCYP83A1 and BoST5C-1, while ETH significantly repressed the expression of side chain extension genes such as BoIPMILSU1-1, BoCYP79B2-1, and BoMAMI-1, and some transcription factors, namely BoMYB28-1, BoMYB34-1, BoMYB76-1, BoCYP79B2-1, and BoMAMI-1. Phylogenetically, the CYP83 family and CYP79B and CYP79F subfamilies may only be involved in GSL synthesis in cruciferous plants. Our unprecedented identification and analysis of GBGs in cabbage at the genome-wide level lays a foundation for the regulation of GSLs synthesis through gene editing and overexpression.


Assuntos
Arabidopsis , Brassica , Brassica/genética , Glucosinolatos/metabolismo , Fatores de Transcrição/genética , Arabidopsis/genética
10.
Genes (Basel) ; 13(9)2022 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-36140758

RESUMO

Cabbage (Brassica oleracea var. capitata) Fusarium wilt (CFW) is a disease that poses a critical threat to global cabbage production. Screening for resistant resources in order to support the breeding of resistant cultivars is the most reliable approach to control this disease. CFW is caused by Fusarium oxysporum f. sp. conglutinans (Foc), which consists of two physiological races (race 1 and 2). While many studies have focused on resistance screening, gene mining, and inheritance-based research associated with resistance to Foc race 1, there have been few studies specifically analyzing resistance to Foc race 2, which is a potential threat that can overcome type A resistance. Here, 166 cabbage resources collected from around the world were evaluated for the resistance to both Foc races, with 46.99% and 38.55% of these cabbage lines being resistant to Foc race 1 and race 2, respectively, whereas 33.74% and 48.80% were susceptible to these two respective races. Of these 166 analyzed cabbage lines, 114 (68.67%) were found to be more susceptible to race 2 than to race 1, and 28 of them were resistant to race 1 while susceptible to race 2, underscoring the highly aggressive nature of Foc race 2. To analyze the inheritance of Foc race 2 resistance, segregated populations derived from the resistant parental line 'Badger Inbred 16' and the susceptible one '01-20' were analyzed with a major gene plus polygene mixed genetic model. The results of this analysis revealed Foc race 2-specific resistance to be under the control of two pairs of additive-dominant-epistatic major genes plus multiple additive-dominant-epistatic genes (model E). The heritability of these major genes in the BC1P1, BC1P2, and F2 generations were 32.14%, 72.80%, and 70.64%, respectively. In summary, these results may aid in future gene mining and breeding of novel CFW-resistant cabbage cultivars.


Assuntos
Brassica , Fusarium , Brassica/genética , Fusarium/genética , Melhoramento Vegetal , Doenças das Plantas/genética
12.
Front Plant Sci ; 13: 852291, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092435

RESUMO

Brassica oleracea is an important species due to its high economic and nutritional value. Moreover, it is an ideal model for studies of morphology and genome evolution. In the genomic era, with massive "omics" data being generated, a high-efficiency platform is crucial to deepen our understanding of this important species. In this study, we developed the B. oleracea Genome Database (BoGDB) to consolidate genome, transcriptome, and metabolome data of B. oleracea cultivars, providing the first cross-omics platform for B. oleracea. In order to make full use of the multi-omics data, BoGDB integrates multiple functional modules, including "Gene Search," "Heatmap," "Genome Browser," "Genome," "Tools," "Metabolic," and "Variation," which provides a user-friendly platform for genomic and genetic research and molecular design breeding of B. oleracea crops. In addition, BoGDB will continue to collect new genomic data of B. oleracea and integrate them into BoGDB when higher-quality genomic data are released.

13.
Int J Mol Sci ; 23(16)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36012365

RESUMO

Hybrid production using lines with cytoplasmic male sterility (CMS) has become an important way to utilize heterosis in vegetables. Ogura CMS, with the advantages of complete pollen abortion, ease of transfer and a progeny sterility rate reaching 100%, is widely used in cruciferous crop breeding. The mapping, cloning, mechanism and application of Ogura CMS and fertility restorer genes in Brassica napus, Brassica rapa, Brassica oleracea and other cruciferous crops are reviewed herein, and the existing problems and future research directions in the application of Ogura CMS are discussed.


Assuntos
Brassica napus , Infertilidade das Plantas , Brassica napus/genética , Produtos Agrícolas/genética , Citoplasma/genética , Citosol , Melhoramento Vegetal , Infertilidade das Plantas/genética
14.
Int J Mol Sci ; 23(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35743099

RESUMO

Petal color is an important agronomic trait in cabbage (Brassica oleracea L. var. capitata). Although the key gene BoCCD4 has been functionally characterized, the underlying molecular regulatory mechanism of petal color formation in cabbage is still unclear. In this study, we applied the transcriptome analysis of yellow petals from the cabbage inbred line YL-1 and white petals from the Chinese kale inbred line A192-1 and the BoCCD4-overexpressing transgenic line YF-2 (YL-1 background), which revealed 1928 DEGs common to both the A192-1 vs. YL-1 and the YL-1 vs. YF-2 comparison groups. One key enzyme-encoding gene, BoAAO3, and two key TF-encoding genes, Bo2g151880 (WRKY) and Bo3g024180 (SBP), related to carotenoid biosynthesis were significantly up-regulated in both the A192-1 and YF-2 petals, which was consistent with the expression pattern of BoCCD4. We speculate that these key genes may interact with BoCCD4 to jointly regulate carotenoid biosynthesis in cabbage petals. This study provides new insights into the molecular regulatory mechanism underlying petal color formation in cabbage.


Assuntos
Brassica , Brassica/genética , Brassica/metabolismo , Carotenoides , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma/genética
15.
Int J Mol Sci ; 23(9)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35563550

RESUMO

Microspore culture, a type of haploid breeding, is extensively used in the cultivation of cruciferous crops such as cabbage. Heat shock (HS) treatment is essential to improve the embryo rate during the culture process; however, its molecular role in boosting early microspore embryogenesis (ME) remains unknown. Here we combined DNA methylation levels, miRNAs, and transcriptome profiles in isolated microspores of cabbage '01-88' under HS (32 °C for 24 h) and normal temperature (25 °C for 24 h) to investigate the regulatory roles of DNA methylation and miRNA in early ME. Global methylation levels were significantly different in the two pre-treatments, and 508 differentially methylated regions (DMRs) were identified; 59.92% of DMRs were correlated with transcripts, and 39.43% of miRNA locus were associated with methylation levels. Significantly, the association analysis revealed that 31 differentially expressed genes (DEGs) were targeted by methylation and miRNA and were mainly involved in the reactive oxygen species (ROS) response and abscisic acid (ABA) signaling, indicating that HS induced DNA methylation, and miRNA might affect ME by influencing ROS and ABA. This study revealed that DNA methylation and miRNA interfered with ME by modulating key genes and pathways, which could broaden our understanding of the molecular regulation of ME induced by HS pre-treatment.


Assuntos
Brassica , MicroRNAs , Brassica/genética , Metilação de DNA , Desenvolvimento Embrionário , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico/genética , MicroRNAs/genética , Melhoramento Vegetal , RNA Mensageiro , Espécies Reativas de Oxigênio
16.
Plants (Basel) ; 11(10)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35631797

RESUMO

Cabbage (Brassica oleracea L. var. capitata) self-incompatibility is important for heterosis. However, the seed production of elite hybrid cannot be facilitated by honey bees due to the cross-incompatibility of the two parents. In this study, the self-compatibility of 58 winter cabbage inbred lines was identified by open-flower self-pollination (OS) and molecular techniques. Based on the NCBI database, a new class I S-haplotype-specific marker, PKC6F/PKC6R, was developed. Verification analyses revealed 9 different S-haplotypes in the 58 cabbage inbred lines; of these lines, 46 and 12 belonged to class I (S6, S7, S12, S14, S33, S45, S51, S68) and class II (S15) S-haplotypes, respectively. The coincidence rate between the self-compatibility index and S-haplotype was 91%. This study developed a Tri-Primer-PCR amplification method to rapidly select plants with specific S-haplotypes in biased segregated S-locus populations. Furthermore, it established an S-haplotype identification system based on these nine S-haplotypes. To overcome parental cross-incompatibility (18-503 and 18-512), an inbred line (18-2169) with the S15 haplotype was selected from the sister lines of self-incompatible 18-512 (S68, class I S-haplotype). The inbred line (18-2169) showed self-compatibility and cross-compatibility with 18-503. This study provides guidance for self-compatibility breeding in cabbage and predicts parental cross-incompatibility in elite combinations.

17.
Plant J ; 110(3): 688-706, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35118736

RESUMO

Leaf heading is an important and economically valuable horticultural trait in many vegetables. The formation of a leafy head is a specialized leaf morphogenesis characterized by the emergence of the enlarged incurving leaves. However, the transcriptional regulation mechanisms underlying the transition to leaf heading remain unclear. We carried out large-scale time-series transcriptome assays covering the major vegetative growth phases of two headingBrassica crops, Chinese cabbage and cabbage, with the non-heading morphotype Taicai as the control. A regulatory transition stage that initiated the heading process is identified, accompanied by a developmental switch from rosette leaf to heading leaf in Chinese cabbages. This transition did not exist in the non-heading control. Moreover, we reveal that the heading transition stage is also conserved in the cabbage clade. Chinese cabbage acquired through domestication a leafy head independently from the origins of heading in other cabbages; phylogenetics supports that the ancestor of all cabbages is non-heading. The launch of the transition stage is closely associated with the ambient temperature. In addition, examination of the biological activities in the transition stage identified the ethylene pathway as particularly active, and we hypothesize that this pathway was targeted for selection for domestication to form the heading trait specifically in Chinese cabbage. In conclusion, our findings on the transcriptome transition that initiated the leaf heading in Chinese cabbage and cabbage provide a new perspective for future studies of leafy head crops.


Assuntos
Brassica , Brassica/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma
18.
Biomolecules ; 12(2)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35204707

RESUMO

The SWEET (sugars will eventually be exported transporter) family was identified as a new class of sugar transporters that function as bidirectional uniporters/facilitators and facilitate the diffusion of sugars across cell membranes along a concentration gradient. SWEETs are found widely in plants and play central roles in many biochemical processes, including the phloem loading of sugar for long-distance transport, pollen nutrition, nectar secretion, seed filling, fruit development, plant-pathogen interactions and responses to abiotic stress. This review focuses on advances of the plant SWEETs, including details about their discovery, characteristics of protein structure, evolution and physiological functions. In addition, we discuss the applications of SWEET in plant breeding. This review provides more in-depth and comprehensive information to help elucidate the molecular basis of the function of SWEETs in plants.


Assuntos
Fenômenos Bioquímicos , Proteínas de Plantas , Transporte Biológico , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Proteínas de Plantas/metabolismo , Plantas/genética , Plantas/metabolismo , Açúcares/metabolismo
19.
Hortic Res ; 9: uhac195, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37180031

RESUMO

Clubroot is a soil-borne disease in cabbage (Brassica oleracea L. var. capitata L.) caused by Plasmodiophora brassicae, which poses a great threat to cabbage production. However, clubroot resistance (CR) genes in Brassica rapa could be introduced into the cabbage via breeding to make it clubroot resistant. In this study, CR genes from B. rapa were introduced into the cabbage genome and the mechanism of gene introgression was explored. Two methods were used to create CR materials: (i) The fertility of CR Ogura CMS cabbage germplasms containing CRa was restored by using an Ogura CMS restorer. After cytoplasmic replacement and microspore culture, CRa-positive microspore individuals were obtained. (ii) Distant hybridization was performed between cabbage and B. rapa, which contained three CR genes (CRa, CRb, and Pb8.1). Finally, BC2 individuals containing all three CR genes were obtained. Inoculation results showed that both CRa-positive microspore individuals and BC2 individuals containing three CR genes were resistant to race 4 of P. brassicae. Sequencing results from CRa-positive microspore individuals with specific molecular markers and genome-wide association study (GWAS) showed penetration at the homologous position of the cabbage genome by a 3.42 Mb CRa containing a fragment from B. rapa; indicating homoeologous exchange (HE) as the theoretical basis for the introgression of CR resistance. The successful introduction of CR into the cabbage genome in the present study can provide useful clues for creating introgression lines within other species of interest.

20.
Genes (Basel) ; 12(12)2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34946976

RESUMO

Carotenoids are natural functional pigments produced by plants and microorganisms and play essential roles in human health. Cabbage (Brassica oleracea L. var. capitata L.) is an economically important vegetable in terms of production and consumption. It is highly nutritious and contains ß-carotene, lutein, and other antioxidant carotenoids. Here, we systematically analyzed carotenoid biosynthetic genes (CBGs) on the whole genome to understand the carotenoid biosynthetic pathway in cabbage. In total, 62 CBGs were identified in the cabbage genome, which are orthologs of 47 CBGs in Arabidopsis thaliana. Out of the 62 CBGs, 46 genes in cabbage were mapped to nine chromosomes. Evolutionary analysis of carotenoid biosynthetic orthologous gene pairs among B. oleracea, B. rapa, and A. thaliana revealed that orthologous genes of B. oleracea underwent a negative selection similar to that of B. rapa. Expression analysis of the CBGs showed functional differentiation of orthologous gene copies in B. oleracea and B. rapa. Exogenous phytohormone treatment suggested that ETH, ABA, and MeJA can promote some important CBGs expression in cabbage. Phylogenetic analysis showed that BoPSYs exhibit high conservatism. Subcellular localization analysis indicated that BoPSYs are located in the chloroplast. This study is the first to study carotenoid biosynthesis genes in cabbage and provides a basis for further research on carotenoid metabolic mechanisms in cabbage.


Assuntos
Vias Biossintéticas , Brassica/genética , Carotenoides/metabolismo , Cloroplastos/metabolismo , Cloroplastos/genética , Mapeamento Cromossômico , Evolução Molecular , Dosagem de Genes , Genômica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA