RESUMO
The surface chemistry of colloidal quantum dots (QDs) plays an important role in determining the photoelectric properties of QD films and the corresponding quantum dot heterojunction solar cells (QDHSCs). To investigate the effects of the ligand structure on the photovoltaic performance and exciton dynamics of QDHSCs, PbS QDHSCs were fabricated by the solid state ligand exchange method with mercaptoalkanoic acid as the cross-linking ligand. Temperature-dependent photoluminescence and ultrafast transient absorption spectra show that the electronic coupling and charge transfer rate within QD ensembles were monotonically enhanced as the ligand length decreased. However, in practical QDHSCs, the second shortest ligand 3-mercaptopropionic acid (MPA) showed higher power conversion efficiency than the shortest ligand thioglycolic acid (TGA). This could be attributed to the difference in their surface trap states, supported by thermally stimulated current measurements. Moreover, compared with the non-conjugated ligand MPA, the conjugated ligand 4-mercaptobenzoic acid (MBA) introduces less trap states and has a similar charge transfer rate in QD ensembles, but has poor photovoltaic properties. This unexpected result could be contributed by the QD-ligand orbital mixing, leading to the charge transfer from QDs to ligands instead of charge transfer between adjacent QDs. This work highlights the significant effects of ligand structures on the photovoltaic properties and exciton dynamics of QDHSCs, which would shed light on the further development of QD-based photoelectric devices.
RESUMO
PURPOSE: To more accurately define clinical target volume for cervical cancer radiation treatment planning by evaluating tumor microscopic extension toward the uterus body (METU) in International Federation of Gynecology and Obstetrics stage Ib-IIa squamous cell carcinoma of the cervix (SCCC). PATIENTS AND METHODS: In this multicenter study, surgical resection specimens from 318 cases of stage Ib-IIa SCCC that underwent radical hysterectomy were included. Patients who had undergone preoperative chemotherapy, radiation, or both were excluded from this study. Microscopic extension of primary tumor toward the uterus body was measured. The association between other pathologic factors and METU was analyzed. RESULTS: Microscopic extension toward the uterus body was not common, with only 12.3% of patients (39 of 318) demonstrating METU. The mean (±SD) distance of METU was 0.32 ± 1.079 mm (range, 0-10 mm). Lymphovascular space invasion was associated with METU distance and occurrence rate. A margin of 5 mm added to gross tumor would adequately cover 99.4% and 99% of the METU in the whole group and in patients with lymphovascular space invasion, respectively. CONCLUSION: According to our analysis of 318 SCCC specimens for METU, using a 5-mm gross tumor volume to clinical target volume margin in the direction of the uterus should be adequate for International Federation of Gynecology and Obstetrics stage Ib-IIa SCCC. Considering the discrepancy between imaging and pathologic methods in determining gross tumor volume extent, we recommend a safer 10-mm margin in the uterine direction as the standard for clinical practice when using MRI for contouring tumor volume.
Assuntos
Carcinoma de Células Escamosas/patologia , Carga Tumoral , Neoplasias do Colo do Útero/patologia , Útero/patologia , Adulto , Fatores Etários , Análise de Variância , Vasos Sanguíneos/patologia , Carcinoma de Células Escamosas/radioterapia , Carcinoma de Células Escamosas/cirurgia , Colo do Útero/patologia , Feminino , Humanos , Histerectomia/métodos , Linfonodos/patologia , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Invasividade Neoplásica , Estadiamento de Neoplasias , Neoplasias do Colo do Útero/radioterapia , Neoplasias do Colo do Útero/cirurgiaRESUMO
Aimed to deal with the limitation of canopy geometry to crop LAI inversion accuracy a new LAI inversion method for different geometrical winter wheat was proposed based on hotspot indices with field-measured experimental data. The present paper analyzed bidirectional reflectance characteristics of erective and loose varieties at red (680 nm) and NIR wavelengths (800 nm and 860 nm) and developed modified normalized difference between hotspot and dark-spot (MNDHD) and hotspot and dark-spot ratio index (HDRI) using hotspot and dark-spot index (HDS) and normalized difference between hotspot and dark-spot (NDHD) for reference. Combined indices were proposed in the form of the product between HDS, NDHD, MNDHD, HDRI and three ordinary vegetation indices NDVI, SR and EVI to inverse LAI for erective and loose wheat. The analysis results showed that LAI inversion accuracy of erective wheat Jing411 were 0.9431 and 0.9092 retrieved from the combined indices between NDVI and MNDHD and HDRI at 860 nm which were better than that of HDS and NDHD, the LAI inversion accuracy of loose wheat Zhongyou9507 were 0.9648 and 0.8956 retrieved from the combined indices between SR and HDRI and MNDHD at 800 nm which were also higher than that of HDS and NDHD. It was finally concluded that the combined indices between hotspot-signature indices and ordinary vegetation indices were feasible enough to inverse LAI for different crop geometrical wheat and multiangle remote sensing data was much more advantageous than perpendicular observation data to extract crop structural parameters.
Assuntos
Folhas de Planta , Triticum/crescimento & desenvolvimento , Análise EspectralRESUMO
Being orientated to the low prescion of crop leaf area index (LAI) inversion using the same spectral vegetation index during different crop growth stages, the present paper analyzed the precision of LAI inversion by employing NDVI(normalized difference vegetation index). Ten vegetation indices were chosen including six broad-band vegetation indices and four narrow-band vegetation indices responding to vegetation cover to inverse LAI in different growth stages. Several conclusions were drawn according to the analysis. The determinant coefficient (R2) and root mean square error (RMSE) between LAI inversion value and true value were 0.5585 and 0.3209 respectively during the whole growth duraton. The mSR (modified simple ratio index) index was appropriate to inverse of LAI during earlier growth stages (before jointing stage) in winter wheat. The R2 and RMSE between LAI inversion value and true value were 0.7287 and 0.2971 respectively. The SR (simple ratio index) index was suitable enough to inverse of LAI during medium growth stages (from joingting stagess to heading stages). The R2 and RMSE between LAI inversion value and true value were 0.6546 and 0.3061 respectively. The NDVI (normalized difference vegetation index) index was proven to be fine to inverse LAI during later growth stages(from heading stage to ripening stage). The R2 and RMSE between LAI inversion value and true value were 0.6794 and 0.3164 respectively. Therefore it was indicated that the results of LAI inversion was much better inverse of winter wheat LAI choosing different vegetation indices during differen growth stages for winter wheat according to the change of vegetation cover and canopy reflectance than merely with NDVI to inverse LAI in the whole growth stages. It was concluded that the precision of LAI inversion was significantly improved with segmented models based on different vegetation indices.