Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Int Immunopharmacol ; 134: 112141, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38733819

RESUMO

BACKGROUND: Novel coronaviruses constitute a significant health threat, prompting the adoption of vaccination as the primary preventive measure. However, current evaluations of immune response and vaccine efficacy are deemed inadequate. OBJECTIVES: The study sought to explore the evolving dynamics of immune response at various vaccination time points and during breakthrough infections. It aimed to elucidate the synergistic effects of epidemiological factors, humoral immunity, and cellular immunity. Additionally, regression curves were used to determine the correlation between the protective efficacy of the vaccine and the stimulated immune response. METHODS: Employing LASSO for high-dimensional data analysis, the study utilised four machine learning algorithms-logistical regression, random forest, LGBM classifier, and AdaBoost classifier-to comprehensively assess the immune response following booster vaccination. RESULTS: Neutralising antibody levels exhibited a rapid surge post-booster, escalating to 102.38 AU/mL at one week and peaking at 298.02 AU/mL at two weeks. Influential factors such as sex, age, disease history, and smoking status significantly impacted post-booster antibody levels. The study further constructed regression curves for neutralising antibodies, non-switched memory B cells, CD4+T cells, and CD8+T cells using LASSO combined with the random forest algorithm. CONCLUSION: The establishment of an artificial intelligence evaluation system emerges as pivotal for predicting breakthrough infection prognosis after the COVID-19 booster vaccination. This research underscores the intricate interplay between various components of immunity and external factors, elucidating key insights to enhance vaccine effectiveness. 3D modelling discerned distinctive interactions between humoral and cellular immunity within prognostic groups (Class 0-2). This underscores the critical role of the synergistic effect of humoral immunity, cellular immunity, and epidemiological factors in determining the protective efficacy of COVID-19 vaccines post-booster administration.

2.
J Vasc Surg ; 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38621637

RESUMO

OBJECTIVE: As it remains unclear whether there are sex-based differences in clinical outcomes after thoracic endovascular aortic repair (TEVAR), this meta-analysis aimed to evaluate differences in early outcomes and overall survival between female and male patients who underwent TEVAR. METHODS: The PubMed, Embase, Web of Science, and Cochrane Central databases were searched for eligible studies published through June 10, 2023, that reported sex-based differences in clinical outcomes after TEVAR. The primary outcome was operative mortality; second outcomes included stroke, spinal cord ischemia, acute kidney injury, hospital length of stay, and overall survival. Patient characteristics, operative data, and early outcomes were aggregated using the random-effects model, presenting pooled risk ratio (RR) or standardized mean difference along with their corresponding 95% confidence intervals (CIs). Overall survival was assessed by reconstructing individual patient data to generate sex-specific pooled Kaplan-Meier curves. This study was registered in PROSPERO (CRD42023426069). RESULTS: Of the 1785 studies retrieved, 14 studies met all eligibility criteria, encompassing a total of 17,374 patients, comprising 5026 female and 12,348 male patients. Female patients were older, had a smaller maximum aortic diameter, had lower rates of smoking and coronary artery disease, and had higher rates of anemia. Intraoperatively, female patients were more likely to use iliac conduits and require blood transfusions. There were no sex-based differences in operative mortality (RR: 1.12, 95% CI: 0.90-1.40; P = .309), stroke (RR: 1.14, 95% CI: 0.95-1.38; P = .165), spinal cord ischemia (RR: 1.33, 95% CI: 0.83-2.14; P = .234), acute kidney injury (RR: 0.78, 95% CI: 0.52-1.17; P = .228), and hospital length of stay (standardized mean difference: 0.09, 95% CI: -0.03 to 0.20; P = .141). Pooled Kaplan-Meier estimates showed a worse overall survival in female patients compared with male patients (87.2% vs 89.8% at 2 years, log-rank P = .001). CONCLUSIONS: Among patients treated by TEVAR, female sex was not associated with increased risk of operative mortality or major morbidity. However, female patients exhibited a lower overall survival after TEVAR compared with male patients.

3.
Food Funct ; 15(9): 4925-4935, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38601989

RESUMO

Background: Emerging studies suggest that focusing on the intake of specific types or sources of sugars may yield greater benefits in preventing chronic kidney disease (CKD). Objective: We aimed to investigate the associations between free and non-free sugar intakes and CKD risk as well as the potential sugar type-gut microbiome interactions. Methods: A total of 138 064 participants from the UK Biobank were included in this prospective study. The free and non-free sugar intakes were assessed using repeated web-based 24-hour dietary recalls. A cause-specific competing risk model was used to estimate hazard ratios (HRs) and the corresponding confidence intervals (CIs) of incident CKD, treating deaths before incident CKD as competing events. Results: During a median follow-up of 10.5 years, 2,923 participants (2.1%) developed CKD. The free sugar intake was positively associated with the risk of CKD (HRquartile 4 vs. quartile 1 = 1.32, 95% CI = 1.18, 1.47), with a nonlinear relationship (P for nonlinearity = 0.01, the risk increased rapidly after free sugars made up 10% of the total energy). The non-free sugar intake was inversely associated with CKD risk (HRquartile 4 vs. quartile 1 = 0.68, 95% CI = 0.60, 0.77), with an L-shaped nonlinear curve (p for nonlinearity = 0.01, the turning point was at 13.5% of the total energy). We found that the associations between free sugar and non-free sugar intakes and CKD risk were more pronounced in participants with high genetically predicted gut microbial abundance. Furthermore, a significant interaction was observed between the genetically predicted gut microbial abundance and non-free sugar intake (P for interaction = 0.04). Conclusion: A higher intake of free sugars was associated with an elevated risk of CKD, whereas a higher intake of non-free sugars was associated with a reduced risk of CKD. The impact of free sugar intake and non-free sugar intake may be modified by the gut microbial abundance.


Assuntos
Microbioma Gastrointestinal , Insuficiência Renal Crônica , Humanos , Estudos Prospectivos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Adulto , Fatores de Risco , Açúcares da Dieta/administração & dosagem , Açúcares da Dieta/efeitos adversos , Reino Unido/epidemiologia
4.
Adv Mater ; : e2402005, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598862

RESUMO

The emerging sodium-ion batteries (SIBs) are one of the most promising candidates expected to complement lithium-ion batteries and diversify the battery market. However, the exploitation of cathode materials with high-rate performance and long-cycle stability for SIBs has remained one of the major challenges. To this end, an efficient approach to enhance rate and cycling performance by introducing an ordered bicontinuous porous structure into cathode materials of SIBs is demonstrated. Prussian blue analogues (PBAs) are selected because they are recognized as a type of most promising SIB cathode materials. Thanks to the presence of 3D continuous channels enabling fast Na+ ions diffusion as well as the intrinsic mechanical stability of bicontinuous architecture, the resultant PBAs exhibit excellent rate capability (80 mAh g-1 at 2.5 A g-1) and ultralong cycling life (>3000 circulations at 0.5 A g-1), reaching the top performance of the reported PBA-based cathode materials. This study opens a new avenue for boosting sluggish ion diffusion kinetics in electrodes of rechargeable batteries and also provides a new paradigm for solving the dilemma that electrodes' failure due to high-stress concentration upon ion storage.

5.
Nature ; 628(8009): 910-918, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570680

RESUMO

OSCA/TMEM63 channels are the largest known family of mechanosensitive channels1-3, playing critical roles in plant4-7 and mammalian8,9 mechanotransduction. Here we determined 44 cryogenic electron microscopy structures of OSCA/TMEM63 channels in different environments to investigate the molecular basis of OSCA/TMEM63 channel mechanosensitivity. In nanodiscs, we mimicked increased membrane tension and observed a dilated pore with membrane access in one of the OSCA1.2 subunits. In liposomes, we captured the fully open structure of OSCA1.2 in the inside-in orientation, in which the pore shows a large lateral opening to the membrane. Unusually for ion channels, structural, functional and computational evidence supports the existence of a 'proteo-lipidic pore' in which lipids act as a wall of the ion permeation pathway. In the less tension-sensitive homologue OSCA3.1, we identified an 'interlocking' lipid tightly bound in the central cleft, keeping the channel closed. Mutation of the lipid-coordinating residues induced OSCA3.1 activation, revealing a conserved open conformation of OSCA channels. Our structures provide a global picture of the OSCA channel gating cycle, uncover the importance of bound lipids and show that each subunit can open independently. This expands both our understanding of channel-mediated mechanotransduction and channel pore formation, with important mechanistic implications for the TMEM16 and TMC protein families.


Assuntos
Canais de Cálcio , Microscopia Crioeletrônica , Ativação do Canal Iônico , Mecanotransdução Celular , Humanos , Anoctaminas/química , Anoctaminas/metabolismo , Canais de Cálcio/química , Canais de Cálcio/metabolismo , Canais de Cálcio/ultraestrutura , Lipídeos/química , Lipossomos/metabolismo , Lipossomos/química , Modelos Moleculares , Nanoestruturas/química
6.
Nat Commun ; 15(1): 2039, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448420

RESUMO

Reversible protein phosphorylation, regulated by protein phosphatases, fine-tunes target protein function and plays a vital role in biological processes. Dysregulation of this process leads to aberrant post-translational modifications (PTMs) and contributes to disease development. Despite the widespread use of artificial catalysts as enzyme mimetics, their direct modulation of proteins remains largely unexplored. To address this gap and enable the reversal of aberrant PTMs for disease therapy, we present the development of artificial protein modulators (APROMs). Through atomic-level engineering of heterogeneous catalysts with asymmetric catalytic centers, these modulators bear structural similarities to protein phosphatases and exhibit remarkable ability to destabilize the bridging µ3-hydroxide. This activation of catalytic centers enables spontaneous hydrolysis of phospho-substrates, providing precise control over PTMs. Notably, APROMs, with protein phosphatase-like characteristics, catalytically reprogram the biological function of α-synuclein by directly hydrolyzing hyperphosphorylated α-synuclein. Consequently, synaptic function is reinforced in Parkinson's disease. Our findings offer a promising avenue for reprogramming protein function through de novo PTMs strategy.


Assuntos
Ursidae , alfa-Sinucleína , Animais , alfa-Sinucleína/genética , Catálise , Engenharia , Hidrólise , Fosfoproteínas Fosfatases/genética
7.
J Med Chem ; 67(7): 5935-5944, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38509003

RESUMO

The dysregulated intracellular cAMP in the kidneys drives cystogenesis and progression in autosomal dominant polycystic kidney disease (ADPKD). Mounting evidence supports that vasopressin V2 receptor (V2R) antagonism effectively reduces cAMP levels, validating this receptor as a therapeutic target. Tolvaptan, an FDA-approved V2R antagonist, shows limitations in its clinical efficacy for ADPKD treatment. Therefore, the pursuit of better-in-class V2R antagonists with an improved efficacy remains pressing. Herein, we synthesized a set of peptide V2R antagonists. Peptide 33 exhibited a high binding affinity for the V2R (Ki = 6.1 ± 1.5 nM) and an extended residence time of 20 ± 1 min, 2-fold that of tolvaptan. This prolonged interaction translated into sustained suppression of cAMP production in washout experiments. Furthermore, peptide 33 exhibited improved efficacies over tolvaptan in both ex vivo and in vivo models of ADPKD, underscoring its potential as a promising lead compound for the treatment of ADPKD.


Assuntos
Rim Policístico Autossômico Dominante , Humanos , Tolvaptan/uso terapêutico , Tolvaptan/metabolismo , Rim Policístico Autossômico Dominante/tratamento farmacológico , Rim Policístico Autossômico Dominante/metabolismo , Antagonistas dos Receptores de Hormônios Antidiuréticos/farmacologia , Antagonistas dos Receptores de Hormônios Antidiuréticos/uso terapêutico , Rim/metabolismo , Vasopressinas/metabolismo , Receptores de Vasopressinas/metabolismo
8.
Int J Biol Macromol ; 265(Pt 2): 130961, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508558

RESUMO

Previous studies have progressively elucidated the involvement of E3 ubiquitin (Ub) ligases in regulating lipid metabolism. Ubiquitination, facilitated by E3 Ub ligases, modifies critical enzymes in lipid metabolism, enabling them to respond to specific signals. In this review, we aim to present a comprehensive analysis of the role of E3 Ub ligases in lipid metabolism, which includes lipid synthesis and lipolysis, and their influence on cellular lipid homeostasis through the modulation of lipid uptake and efflux. Furthermore, it explores how the ubiquitination process governs the degradation or activation of pivotal enzymes, thereby regulating lipid metabolism at the transcriptional level. Perturbations in lipid metabolism have been implicated in various diseases, including hepatic lipid metabolism disorders, atherosclerosis, diabetes, and cancer. Therefore, this review focuses on the association between E3 Ub ligases and lipid metabolism in lipid-related diseases, highlighting enzymes critically involved in lipid synthesis and catabolism, transcriptional regulators, lipid uptake translocators, and transporters. Overall, this review aims to identify gaps in current knowledge, highlight areas requiring further research, offer potential targeted therapeutic approaches, and provide a comprehensive outlook on clinical conditions associated with lipid metabolic diseases.


Assuntos
Transtornos do Metabolismo dos Lipídeos , Doenças Metabólicas , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Metabolismo dos Lipídeos , Lipídeos
9.
Int Immunopharmacol ; 131: 111829, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38489974

RESUMO

BACKGROUND: Following the COVID-19 pandemic, studies have identified several prevalent characteristics, especially related to lymphocyte subsets. However, limited research is available on the focus of this study, namely, the specific memory cell subsets among individuals who received COVID-19 vaccine boosters and subsequently experienced a SARS-CoV-2 breakthrough infection. METHODS: Flow cytometry (FCM) was employed to investigate the early and longitudinal pattern changes of cellular immunity in patients with SARS-CoV-2 breakthrough infections following COVID-19 vaccine boosters. XGBoost (a machine learning algorithm) was employed to analyze cellular immunity prior to SARS-CoV-2 breakthrough, aiming to establish a prognostic model for SARS-CoV-2 breakthrough infections. RESULTS: Following SARS-CoV-2 breakthrough infection, naïve T cells and TEMRA subsets increased while the percentage of TCM and TEM cells decreased. Naïve and non-switched memory B cells increased while switched and double-negative memory B cells decreased. The XGBoost model achieved an area under the curve (AUC) of 0.78, with an accuracy rate of 81.8 %, a sensitivity of 75 %, and specificity of 85.7 %. TNF-α, CD27-CD19+cells, and TEMRA subsets were identified as high predictors. An increase in TNF-α, cTfh, double-negative memory B cells, IL-6, IL-10, and IFN-γ prior to SARS-CoV-2 infection was associated with enduring clinical symptoms; conversely, an increase in CD3+ T cells, CD4+ T cells, and IL-2 was associated with clinical with non-enduring clinical symptoms. CONCLUSION: SARS-CoV-2 breakthrough infection leads to disturbances in cellular immunity. Assessing cellular immunity prior to breakthrough infection serves as a valuable prognostic tool for SARS-CoV-2 infection, which facilitates clinical decision-making.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , SARS-CoV-2 , Infecções Irruptivas , Pandemias , Prognóstico , Estudos Prospectivos , Fator de Necrose Tumoral alfa , Imunidade Celular , Anticorpos Antivirais
10.
Diabetes Metab J ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503277

RESUMO

Background: The incidence density of metabolic dysfunction-associated fatty liver disease (MAFLD) and the effect of a healthy lifestyle on the risk of MAFLD remain unknown. We evaluated the prevalence and incidence density of MAFLD and investigated the association between healthy lifestyle and the risk of MAFLD. Methods: A cross-sectional analysis was conducted on 37,422 participants to explore the prevalence of MAFLD. A cohort analysis of 18,964 individuals was conducted to identify the incidence of MAFLD, as well as the association between healthy lifestyle and MAFLD. Cox proportional hazards regression was used to calculate the hazard ratio (HR) and 95% confidence interval (CI) with adjustments for confounding factors. Results: The prevalence of MAFLD, non-alcoholic fatty liver disease, and their comorbidities were 30.38%, 28.09%, and 26.13%, respectively. After approximately 70 thousand person-years of follow-up, the incidence densities of the three conditions were 61.03, 55.49, and 51.64 per 1,000 person-years, respectively. Adherence to an overall healthy lifestyle was associated with a 19% decreased risk of MAFLD (HR, 0.81; 95% CI, 0.72 to 0.92), and the effects were modified by baseline age, sex, and body mass index (BMI). Subgroup analyses revealed that younger participants, men, and those with a lower BMI experienced more significant beneficial effects from healthy lifestyle. Conclusion: Our results highlight the beneficial effect of adherence to a healthy lifestyle on the prevention of MAFLD. Health management for improving dietary intake, physical activity, and smoking and drinking habits are critical to improving MAFLD.

11.
Biotechnol Bioeng ; 121(5): 1674-1687, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38372655

RESUMO

Hollow fiber filter fouling is a common issue plaguing perfusion production process for biologics therapeutics, but the nature of filter foulant has been elusive. Here we studied cell culture materials especially Chinese hamster ovary (CHO) cell-derived extracellular vesicles in perfusion process to determine their role in filter fouling. We found that the decrease of CHO-derived small extracellular vesicles (sEVs) with 50-200 nm in diameter in perfusion permeates always preceded the increase in transmembrane pressure (TMP) and subsequent decrease in product sieving, suggesting that sEVs might have been retained inside filters and contributed to filter fouling. Using scanning electron microscopy and helium ion microscopy, we found sEV-like structures in pores and on foulant patches of hollow fiber tangential flow filtration filter (HF-TFF) membranes. We also observed that the Day 28 TMP of perfusion culture correlated positively with the percentage of foulant patch areas. In addition, energy dispersive X-ray spectroscopy-based elemental mapping microscopy and spectroscopy analysis suggests that foulant patches had enriched cellular materials but not antifoam. Fluorescent staining results further indicate that these cellular materials could be DNA, proteins, and even adherent CHO cells. Lastly, in a small-scale HF-TFF model, addition of CHO-specific sEVs in CHO culture simulated filter fouling behaviors in a concentration-dependent manner. Based on these results, we proposed a mechanism of HF-TFF fouling, in which filter pore constriction by CHO sEVs is followed by cake formation of cellular materials on filter membrane.


Assuntos
Anticorpos Monoclonais , Filtração , Cricetinae , Animais , Cricetulus , Células CHO , Perfusão , Filtração/métodos , Reatores Biológicos , Membranas Artificiais
12.
Nat Commun ; 15(1): 976, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302502

RESUMO

Early detection is critical to achieving improved treatment outcomes for child patients with congenital heart diseases (CHDs). Therefore, developing effective CHD detection techniques using low-cost and non-invasive pediatric electrocardiogram are highly desirable. We propose a deep learning approach for CHD detection, CHDdECG, which automatically extracts features from pediatric electrocardiogram and wavelet transformation characteristics, and integrates them with key human-concept features. Developed on 65,869 cases, CHDdECG achieved ROC-AUC of 0.915 and specificity of 0.881 on a real-world test set covering 12,000 cases. Additionally, on two external test sets with 7137 and 8121 cases, the overall ROC-AUC were 0.917 and 0.907 while specificities were 0.937 and 0.907. Notably, CHDdECG surpassed cardiologists in CHD detection performance comparison, and feature importance scores suggested greater influence of automatically extracted electrocardiogram features on CHD detection compared with human-concept features, implying that CHDdECG may grasp some knowledge beyond human cognition. Our study directly impacts CHD detection with pediatric electrocardiogram and demonstrates the potential of pediatric electrocardiogram for broader benefits.


Assuntos
Aprendizado Profundo , Cardiopatias Congênitas , Humanos , Criança , Cardiopatias Congênitas/diagnóstico , Eletrocardiografia , Cognição
13.
Biotechnol Prog ; : e3442, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38377061

RESUMO

Cell line development (CLD) plays a crucial role in the manufacturing process development of therapeutic biologics. Most biologics are produced in Chinese hamster ovary (CHO) cell. Because of the nature of random transgene integration in CHO genome and CHO's inherent plasticity, stable CHO transfectants usually have a vast diversity in productivity, growth, and product quality. Thus, we often must resort to screening a large number of cell pools and clones to increase the probability of identifying the ideal production cell line, which is a very laborious and resource-demanding process. Here we have developed a deep-well plate (DWP) enabled high throughput (DEHT) CLD platform using 24-well DWP (24DWP), liquid handler, and other automation components. This platform has capabilities covering the key steps of CLD including cell passaging, clone imaging and expansion, and fed-batch production. We are the first to demonstrate the suitability of 24DWP for CLD by confirming minimal well-to-well and plate-to-plate variability and the absence of well-to-well cross contamination. We also demonstrated that growth, production, and product quality of 24DWP cultures were comparable to those of conventional shake flask cultures. The DEHT platform enables scientists to screen five times more cultures than the conventional CLD platform, thus significantly decreases the resources needed to identify an ideal production cell line for biologics manufacturing.

14.
Phys Chem Chem Phys ; 26(6): 4968-4974, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38230694

RESUMO

Based on the excellent piezoelectric properties of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT) single crystals, a hole-doped manganite film/PMN-PT heterostructure has been constructed to achieve electric-field and light co-control of physical properties. Here, we report the resistivity switching behavior of Eu0.7Sr0.3MnO3/PMN-PT(111) multiferroic heterostructures under different in-plane reading currents, temperatures, light stimuli and electric fields, and discuss the underlying coupling mechanisms of resistivity change. The transition from the electric-field induced lattice strain effect to polarization current effect can be controlled effectively by decreasing the in-plane reading current at room temperature. With the decrease of temperature, the interfacial charge effect dominates over the lattice strain effect due to the reduced charge carrier density. In addition, light stimulus can lead to the delocalization of eg carriers, and thus enhance the lattice strain effect and suppress the interfacial charge effect. This work helps to understand essential physics of magnetoelectric coupling and also provides a potential method to realize energy-efficient multi-field control of manganite thin films.

15.
BMC Cancer ; 23(1): 1224, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087278

RESUMO

BACKGROUND: The clinical relevance of circulating tumor cell-white blood cell (CTC-WBC) clusters in cancer prognosis is a subject of ongoing debate. This study aims to unravel their contentious predictive value for patient outcomes. METHODS: We conducted a comprehensive literature search of PubMed, Embase, and Cochrane Library up to December 2022. Eligible studies that reported survival outcomes and examined the presence of CTC-WBC clusters in solid tumor patients were included. Hazard ratios (HR) were pooled to assess the association between CTC-WBC clusters and overall survival (OS), as well as progression-free survival (PFS)/disease-free survival (DFS)/metastasis-free survival (MFS)/recurrence-free survival (RFS). Subgroup analyses were performed based on sampling time, treatment method, detection method, detection system, and cancer type. RESULTS: A total of 1471 patients from 10 studies were included in this meta-analysis. The presence of CTC-WBCs was assessed as a prognostic factor for overall survival and PFS/DFS/MFS/RFS. The pooled analysis demonstrated that the presence of CTC-WBC clusters was significantly associated with worse OS (HR = 2.44, 95% CI: 1.74-3.40, P < 0.001) and PFS/DFS/MFS/RFS (HR = 1.83, 95% CI: 1.49-2.24, P < 0.001). Subgroup analyses based on sampling time, treatment method, detection method, detection system, cancer type, and study type consistently supported these findings. Further analyses indicated that CTC-WBC clusters were associated with larger tumor size (OR = 2.65, 95% CI: 1.58-4.44, P < 0.001) and higher alpha-fetoprotein levels (OR = 2.52, 95% CI: 1.50-4.22, P < 0.001) in hepatocellular carcinoma. However, no significant association was found between CTC-WBC clusters and TNM stage, depth of tumor invasion, or lymph node metastasis in the overall analysis. CONCLUSIONS: CTC-WBC clusters are negative predictors for OS and PFS/DFS/MFS/RFS in patients with solid tumors. Monitoring CTC-WBC levels may provide valuable information for predicting disease progression and guiding treatment decisions.


Assuntos
Neoplasias Hepáticas , Células Neoplásicas Circulantes , Humanos , Prognóstico , Células Neoplásicas Circulantes/patologia , Intervalo Livre de Doença , Intervalo Livre de Progressão
16.
J Adv Res ; 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38123019

RESUMO

BACKGROUND: Cardiovascular disease (CVD) has been the leading cause of death worldwide for many years. In recent years, exosomes have gained extensive attention in the cardiovascular system due to their excellent biocompatibility. Studies have extensively researched miRNAs in exosomes and found that they play critical roles in various physiological and pathological processes in the cardiovascular system. These processes include promoting or inhibiting inflammatory responses, promoting angiogenesis, participating in cell proliferation and migration, and promoting pathological progression such as fibrosis. AIM OF REVIEW: This systematic review examines the role of exosomes in various cardiovascular diseases such as atherosclerosis, myocardial infarction, ischemia-reperfusion injury, heart failure and cardiomyopathy. It also presents the latest treatment and prevention methods utilizing exosomes. The study aims to provide new insights and approaches for preventing and treating cardiovascular diseases by exploring the relationship between exosomes and these conditions. Furthermore, the review emphasizes the potential clinical use of exosomes as biomarkers for diagnosing cardiovascular diseases. KEY SCIENTIFIC CONCEPTS OF REVIEW: Exosomes are nanoscale vesicles surrounded by lipid bilayers that are secreted by most cells in the body. They are heterogeneous, varying in size and composition, with a diameter typically ranging from 40 to 160 nm. Exosomes serve as a means of information communication between cells, carrying various biologically active substances, including lipids, proteins, and small RNAs such as miRNAs and lncRNAs. As a result, they participate in both physiological and pathological processes within the body.

17.
Int J Cardiol Heart Vasc ; 49: 101301, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38035260

RESUMO

Background: The Padua Prediction Score (PPS) recommended by the guidelines lacks effective external validation in a Chinese cohort. This study sought to assess the accuracy of the PPS to predict venous thromboembolism (VTE) risk in medical inpatients with acute respiratory conditions. Methods: This consecutive cohort study included 1,574 inpatients from January to August 2019. The occurrence rate of VTE in patients classified at high-risk and low-risk groups according to PPS and Caprini risk assessment model (RAM) was compared. The discriminatory capability of the RAMs was evaluated in all the patients and the subgroup without pharmacological prophylaxis. Reclassification parameters were also used to assess the clinical utility. Results: 170 (10.8%) patients were objectively confirmed as having VTE during hospitalization. The incidence rate of VTE in low-risk patients was 6.3% by PPS, which was significantly higher than that by Caprini RAM (2.6%, p < 0.001). The area under the curve (AUC) for PPS and Caprini RAM was 0.714 (95%CI, 0.672-0.756) and 0.760 (95%CI, 0.724-0.797), respectively (p = 0.003). The AUC of Caprini RAM was larger than PPS even in subgroups without pharmacological prophylaxis (0.774 vs 0.709, p = 0.002). Compared with Caprini RAM, the net reclassification index was estimated at 0.037 (p = 0.436), and integrated discrimination improvement was 0.015 (p = 0.495) by PPS. Conclusions: According to our cohort study, PPS may not be appropriate to predict VTE risk in hospitalized patients with acute respiratory conditions. An accurate, widely applicable, validated RAM needs to be further constructed in Chinese medical inpatients.

18.
ERJ Open Res ; 9(6)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38020560

RESUMO

Background: Although computed tomography (CT)-defined emphysema is considered a predictor of lung cancer risk, it is not fully clear whether CT-defined emphysema is associated with the prognosis of lung cancer. We aimed to assess the clinical impact of CT-defined emphysema on the survival of lung cancer. Methods: In the prospective cohort study of nonsmall cell lung cancer (NSCLC), the correlation between CT-defined emphysema and clinical variables was analysed. A multivariable Cox regression model was built to assess the association between CT-defined emphysema and overall survival (OS) for up to 8.8 years. The differences in survival analyses were derived by Kaplan-Meier analysis and log-rank testing. Low attenuation area (LAA%) was defined as the per cent of voxels below -950 HU. Results: 854 patients were included and CT-defined emphysema was present in 300 (35.1%) at diagnosis. Epidermal growth factor receptor (EGFR) wild-type (OR 1.998; p<0.001) and anaplastic lymphoma kinase (ALK) wild-type (OR 2.277; p=0.004) were associated with CT-defined emphysema. CT-defined emphysema remained a significant predictor of prognosis adjusting for age, sex, smoking history, tumour histology and Eastern Cooperative Oncology Group Performance Status (ECOG PS), whether in I-IIIA stage (adjusted hazard ratio (HR) 1.745; p=0.017) or in IIIB-IV stage (adjusted HR 1.291; p=0.022). Stratified analyses showed that OS rate among the driver oncogene groups with different CT-defined emphysema status differed significantly (log-rank p<0.001). Furthermore, patients with centrilobular emphysema (CLE) with LAA% >17% displayed poorer survival than those with LAA% ≤17% (median 432 versus 670 days; HR 1.564; p=0.020). Conclusions: CT-defined emphysema, especially CLE with LAA%>17%, is an independent predictor of NSCLC prognosis. Moreover, prospective studies are needed to further explore this association.

19.
Hum Reprod Open ; 2023(4): hoad041, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954934

RESUMO

STUDY QUESTION: Is dietary non-enzymatic antioxidant capacity related to semen quality? SUMMARY ANSWER: The only statistically significant association of semen quality parameters with dietary total antioxidant capacity (DTAC) detected was an inverse association between DTAC and ejaculate volume. WHAT IS KNOWN ALREADY: Growing interest exists regarding the role of diet in influencing semen quality. While DTAC is linked to favorable health outcomes, its association with semen quality, especially among men attending infertility clinics, remains understudied. STUDY DESIGN SIZE DURATION: This cross-sectional study was carried out between June and December of 2020. In total, 1715 participants were included in the final analysis. PARTICIPANTS/MATERIALS SETTING METHODS: Men who attended an infertility clinic in China were enrolled. Experienced clinical technicians performed the semen analysis. The DTAC indices included the ferric-reducing ability of plasma, oxygen radical absorbance capacity, total reactive antioxidant potential, and Trolox equivalent antioxidant capacity. The quantile regression model was used for multivariate analysis. MAIN RESULTS AND THE ROLE OF CHANCE: After adjustment for a variety of confounding variables, a significant inverse association was identified between DTAC and ejaculate volume (ßcontinuous FRAP = -0.015, 95% CI = -0.023, -0.006, ßT3 vs T1 = -0.193, 95% CI = -0.379, -0.006, Ptrend = 0.007; ßcontinuous TRAP = -0.019, 95% CI = -0.041, 0.002, ßT3 vs T1 = -0.291, 95% CI = -0.469, -0.112, Ptrend = 0.002). The majority of DTAC indices have no statistically significant association with semen quality parameters. LIMITATIONS REASONS FOR CAUTION: We cannot infer causality because of the nature of the cross-sectional study design. The robustness of the conclusion may be compromised by the exactness of non-enzymatic antioxidant capacity estimation. WIDER IMPLICATIONS OF THE FINDINGS: Our findings demonstrated no association between DTAC indices and semen quality parameters among men attending an infertility clinic, except for ejaculate volume. Even though our findings are mostly non-significant, they contribute novel knowledge to the field of study while also laying the groundwork for future well-designed studies. STUDY FUNDING/COMPETING INTERESTS: This work was supported by the JieBangGuaShuai Project of Liaoning Province [grant number 2021JH1/10400050], the Clinical Research Cultivation Project of Shengjing Hospital [grant number M1590], and the Outstanding Scientific Fund of Shengjing Hospital [grant number M1150]. The sponsors had no role in study design, or in the collection, analysis, and interpretation of data, or in the writing of the report, or in the decision to submit the article for publication. There are no conflicts of interest to declare. TRIAL REGISTRATION NUMBER: N/A.

20.
Basic Res Cardiol ; 118(1): 48, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938421

RESUMO

Cardiovascular disease (CVD) is a major threat to human health, accounting for 46% of non-communicable disease deaths. Glycolysis is a conserved and rigorous biological process that breaks down glucose into pyruvate, and its primary function is to provide the body with the energy and intermediate products needed for life activities. The non-glycolytic actions of enzymes associated with the glycolytic pathway have long been found to be associated with the development of CVD, typically exemplified by metabolic remodeling in heart failure, which is a condition in which the heart exhibits a rapid adaptive response to hypoxic and hypoxic conditions, occurring early in the course of heart failure. It is mainly characterized by a decrease in oxidative phosphorylation and a rise in the glycolytic pathway, and the rise in glycolysis is considered a hallmark of metabolic remodeling. In addition to this, the glycolytic metabolic pathway is the main source of energy for cardiomyocytes during ischemia-reperfusion. Not only that, the auxiliary pathways of glycolysis, such as the polyol pathway, hexosamine pathway, and pentose phosphate pathway, are also closely related to CVD. Therefore, targeting glycolysis is very attractive for therapeutic intervention in CVD. However, the relationship between glycolytic pathway and CVD is very complex, and some preclinical studies have confirmed that targeting glycolysis does have a certain degree of efficacy, but its specific role in the development of CVD has yet to be explored. This article aims to summarize the current knowledge regarding the glycolytic pathway and its key enzymes (including hexokinase (HK), phosphoglucose isomerase (PGI), phosphofructokinase-1 (PFK1), aldolase (Aldolase), phosphoglycerate metatase (PGAM), enolase (ENO) pyruvate kinase (PKM) lactate dehydrogenase (LDH)) for their role in cardiovascular diseases (e.g., heart failure, myocardial infarction, atherosclerosis) and possible emerging therapeutic targets.


Assuntos
Doenças Cardiovasculares , Insuficiência Cardíaca , Humanos , Fosforilação Oxidativa , Aldeído Liases , Redes e Vias Metabólicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA