Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
2.
Nat Commun ; 15(1): 7265, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39179539

RESUMO

Rosacea patients show facial hypersensitivity to stimulus factors (such as heat and capsaicin); however, the underlying mechanism of this hyperresponsiveness remains poorly defined. Here, we show capsaicin stimulation in mice induces exacerbated rosacea-like dermatitis but has no apparent effect on normal skin. Nociceptor ablation substantially reduces the hyperresponsiveness of rosacea-like dermatitis. Subsequently, we find that γδ T cells express Ramp1, the receptor of the neuropeptide CGRP, and are in close contact with these nociceptors in the skin. γδ T cells are significantly increased in rosacea skin lesions and can be further recruited and activated by neuron-secreted CGRP. Rosacea-like dermatitis is reduced in T cell receptor δ-deficient (Tcrd-/-) mice, and the nociceptor-mediated aggravation of rosacea-like dermatitis is also reduced in these mice. In vitro experiments show that CGRP induces IL17A secretion from γδ T cells by regulating inflammation-related and metabolism-related pathways. Finally, rimegepant, a CGRP receptor antagonist, shows efficacy in the treatment of rosacea-like dermatitis. In conclusion, our findings demonstrate a neuron-CGRP-γδT cell axis that contributes to the hyperresponsiveness of rosacea, thereby showing that targeting CGRP is a potentially effective therapeutic strategy for rosacea.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Capsaicina , Receptores de Antígenos de Linfócitos T gama-delta , Rosácea , Células Receptoras Sensoriais , Animais , Rosácea/imunologia , Camundongos , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Células Receptoras Sensoriais/metabolismo , Capsaicina/farmacologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/genética , Pele/patologia , Pele/imunologia , Pele/metabolismo , Interleucina-17/metabolismo , Interleucina-17/imunologia , Camundongos Knockout , Camundongos Endogâmicos C57BL , Dermatite/imunologia , Dermatite/metabolismo , Dermatite/patologia , Modelos Animais de Doenças , Masculino , Nociceptores/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Humanos , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo
3.
Exp Dermatol ; 33(6): e15120, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38886965

RESUMO

Ageing is an inevitable biological process characterized by progressive decline in physiological functions. It is a complex natural phenomenon that will cause structural and functional decline. Despite substantial progress in understanding the mechanism of ageing, both predictive biomarkers and preventive therapies remain limited. Using Weighted Gene Co-expression Network Analysis (WGCNA) and machine learning techniques, we identified Carboxypeptidase E (CPE) as a pivotal marker of skin ageing, based on ageing-related bulk transcriptome and single-cell transcriptome data. Next, our investigation reveals downregulation of CPE in replicative, UVA-induced, and H2O2-induced senescent human dermal fibroblast cells (HDFs). Furthermore, shRNA-mediated CPE knockdown induced HDFs senescence, and overexpression of CPE delayed HDFs senescence. Moreover, downregulated CPE inhibits collagen synthesis and induces inflammation, highlighting its potential as a therapeutic target for skin ageing. In conclusion, our study demonstrated that CPE functions as a predictor and optional target for therapeutic intervention of skin ageing.


Assuntos
Biomarcadores , Senescência Celular , Biologia Computacional , Fibroblastos , Envelhecimento da Pele , Humanos , Envelhecimento da Pele/genética , Fibroblastos/metabolismo , Biomarcadores/metabolismo , Aprendizado de Máquina , Transcriptoma , Colágeno/metabolismo , Regulação para Baixo , Pele/metabolismo , Raios Ultravioleta , Peróxido de Hidrogênio/metabolismo
4.
J Adv Res ; 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909883

RESUMO

BACKGROUND: Rosacea is an inflammatory skin disorder characterized by the release of inflammatory mediators from keratinocytes, which are thought to play a crucial role in its pathogenesis. Despite an incidence of approximately 5.5%, rosacea is associated with a poor quality of life. However, as the pathogenesis of rosacea remains enigmatic, treatment options are limited. OBJECTIVES: To investigate the pathogenesis of rosacea and explore new therapeutic strategies. METHODS: Transcriptome data from rosacea patients combined with immunohistochemical staining were used to investigate the activation of STAT3 in rosacea. The role of STAT3 activation in rosacea was subsequently explored by inhibiting STAT3 activation both in vivo and in vitro. The key molecules downstream of STAT3 activation were identified through data analysis and experiments. Dual-luciferase assay and ChIP-qPCR analysis were used to validate the direct binding of STAT3 to the IL-36G promoter. DARTS, in combination with experimental screening, was employed to identify effective drugs targeting STAT3 for rosacea treatment. RESULTS: STAT3 signaling was hyperactivated in rosacea and served as a promoter of the keratinocyte-driven inflammatory response. Mechanistically, activated STAT3 directly bind to the IL-36G promoter region to amplify downstream inflammatory signals by promoting IL-36G transcription, and treatment with a neutralizing antibody (α-IL36γ) could mitigate rosacea-like inflammation. Notably, a natural plant extract (pogostone), which can interact with STAT3 directly to inhibit its activation and affect the STAT3/IL36G signaling pathway, was screened as a promising topical medication for rosacea treatment. CONCLUSIONS: Our study revealed a pivotal role for STAT3/IL36G signaling in the development of rosacea, suggesting that targeting this pathway might be a potential strategy for rosacea treatment.

5.
Clin Transl Med ; 14(5): e1660, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38764260

RESUMO

BACKGROUND: Human dermal fibroblasts (HDFs) are essential in the processes of skin ageing and wound healing. However, the underlying mechanism of HDFs in skin healing of the elderly has not been well defined. This study aims to elucidate the mechanisms of HDFs senescence and how senescent HDFs affect wound healing in aged skin. METHODS: The expression and function of sperm equatorial segment protein 1 (SPESP1) in skin ageing were evaluated via in vivo and in vitro experiments. To delve into the potential molecular mechanisms by which SPESP1 influences skin ageing, a combination of techniques was employed, including proteomics, RNA sequencing, immunoprecipitation, chromatin immunoprecipitation and liquid chromatography-mass spectrometry analyses. Clearance of senescent cells by dasatinib plus quercetin (D+Q) was investigated to explore the role of SPESP1-induced senescent HDFs in wound healing. RESULTS: Here, we define the critical role of SPESP1 in ameliorating HDFs senescence and retarding the skin ageing process. Mechanistic studies demonstrate that SPESP1 directly binds to methyl-binding protein, leading to Decorin demethylation and subsequently upregulation of its expression. Moreover, SPESP1 knockdown delays wound healing in young mice and SPESP1 overexpression induces wound healing in old mice. Notably, pharmacogenetic clearance of senescent cells by D+Q improved wound healing in SPESP1 knockdown skin. CONCLUSIONS: Taken together, these findings reveal the critical role of SPESP1 in skin ageing and wound healing, expecting to facilitate the development of anti-ageing strategies and improve wound healing in the elderly.


Assuntos
Proteínas de Transporte , Senescência Celular , Fibroblastos , Proteínas de Plasma Seminal , Cicatrização , Animais , Humanos , Masculino , Camundongos , Senescência Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Quercetina/farmacologia , Envelhecimento da Pele/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Plasma Seminal/genética , Proteínas de Plasma Seminal/metabolismo
6.
Life Sci ; 347: 122675, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38688383

RESUMO

AIMS: Rosacea is an inflammatory skin disease with immune and vascular dysfunction. Although there are multiple treatment strategies for rosacea, the clinical outcomes are unsatisfactory. MAIN METHODS: Combining transcriptome data and the Connectivity Map database quercetin was identified as a novel candidate for rosacea. Next, the therapeutic efficacy of quercetin was substantiated through proteomic analyses, in vivo experiments, and in vitro assays. Additionally, the utilization of DARTS, molecular docking and experimental verification revealed the therapeutic mechanisms of quercetin. KEY FINDINGS: Treatment with quercetin resulted in the following effects: (i) it effectively ameliorated rosacea-like features by reducing immune infiltration and angiogenesis; (ii) it suppressed the expression of inflammatory mediators in HaCaT cells and HDMECs; (iii) it interacted with p65 and ICAM-1 directly, and this interaction resulted in the repression of NF-κB signal and ICAM-1 expression in rosacea. SIGNIFICANCE: We show for the first time that quercetin interacted with p65 and ICAM-1 directly to alleviated inflammatory and vascular dysfunction, suggesting quercetin is a novel, promising therapeutic candidate for rosacea.


Assuntos
Inflamação , Molécula 1 de Adesão Intercelular , Quercetina , Rosácea , Fator de Transcrição RelA , Quercetina/farmacologia , Molécula 1 de Adesão Intercelular/metabolismo , Rosácea/tratamento farmacológico , Rosácea/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Fator de Transcrição RelA/metabolismo , Animais , Simulação de Acoplamento Molecular , Camundongos , Feminino , Masculino
7.
Clin Exp Dermatol ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38648509

RESUMO

BACKGROUND: Elderly-onset seborrheic dermatitis (SD) seriously affects the quality of life. However, associations between air pollution exposures and elderly-onset SD incidence have not been elucidated. OBJECTIVES: Investigate air pollution's role in the incidence of elderly-onset SD. METHODS: We engaged a prospective cohort analysis utilizing the UK Biobank database. Exposure data for specific air pollutants (PM2.5, PM2.5-10, NOX, NO2, and PM10) spanning various years was incorporated. Through a composite air pollution score constructed from five pollutants and employing Cox proportional hazards models, the relationship between pollution and SD was delineated. RESULTS: Our examination of 193,995 participants identified 3,363 SD cases. Higher concentrations of specific pollutants, particularly in the upper quartile (Q4), were significantly linked to an elevated SD risk. Notably, PM2.5, PM10, NO2, and NOX exhibited hazard ratios of 1.11, 1.15, 1.22, and 1.15, respectively. The correlation was further solidified with a positive association between air pollution score increments and SD onset. Intriguingly, this association was accentuated in certain demographics, including younger males, the socioeconomically deprived, smokers, daily alcohol consumers, and those engaging in regular physical activity. CONCLUSIONS: Our findings revealed that air pollution exposures were associated with elderly-onset SD incidence. These results emphasize the importance of preventing environmental exposures to the risk of SD development.

8.
Int J Biol Sci ; 20(5): 1763-1777, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481803

RESUMO

N6-methyladenosine (m6A), the most prevalent posttranscriptional RNA modification, involved in various diseases and cellular processes. However, the underlying mechanisms of m6A regulation in skin aging are still not fully understood. In this study, proteomics analysis revealed a significant correlation between Wilms' tumor 1-associating protein (WTAP) expression and cellular senescence. Next, upregulated WTAP was detected in aging skin tissues and senescent human dermal fibroblasts (HDFs). Functionally, overexpressed WTAP induced senescence and knockdown of WTAP rescued senescence of HDFs. Mechanistically, WTAP directly targeted ELF3 and promoted its expression in an m6A-dependent manner. Exogenous-ELF3 overexpression evidently reversed shWTAP-suppressed fibroblast senescence. Furthermore, ELF3 induced IRF8-mediated senescence-associated secretory phenotype (SASP) by binding to the (-817 to -804) site of the IRF8 promoter directly. In vivo, overexpression of WTAP evidently increased senescence cells in skin and induced skin aging. In summary, these findings revealed the critical role of WTAP-mediated m6A modification in skin aging and identified ELF3 as an important target of m6A modification in HDFs senescence, providing a new idea for delaying the aging process.


Assuntos
Senescência Celular , Fenótipo Secretor Associado à Senescência , Humanos , Adenosina , Proteínas de Ciclo Celular , Senescência Celular/genética , Proteínas de Ligação a DNA , Fatores Reguladores de Interferon , Proteínas Proto-Oncogênicas c-ets , RNA , Fatores de Processamento de RNA , Fatores de Transcrição
9.
Medicine (Baltimore) ; 103(11): e37496, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489709

RESUMO

CD8+ T cells have great roles in tumor suppression and elimination of various tumors including hepatocellular carcinoma (HCC). Nonetheless, potential prognostic roles of CD8+ T cell-related genes (CD8Gs) in HCC remains unknown. In our study, 416 CD8Gs were identified in HCC, which were enriched in inflammatory and immune signaling pathways. Using The Cancer Genome Atlas dataset, a 5-CD8Gs risk model (KLRB1, FYN, IL2RG, FCER1G, and DGKZ) was constructed, which was verified in International Cancer Genome Consortium and gene expression omnibus datasets. Furthermore, we found that overall survival was independently correlated with the CD8Gs signature, and it was associated with immune- and cancer-related signaling pathways and immune cells infiltration. Finally, drug sensitivity data indicated that 10 chemotherapeutic drugs held promise as therapeutics for HCC patients with high-risk. In conclusion, multi-databases analysis showed that 5-CD8Gs and their signature could be an indicator to predict candidate drugs for HCC therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Prognóstico , Neoplasias Hepáticas/genética , Linfócitos T CD8-Positivos , Biomarcadores
10.
J Dermatol ; 51(6): 791-798, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38421898

RESUMO

Rosacea is a chronic inflammatory skin disease. Systemic inflammation plays a vital role in the pathogenesis of rosacea. Many studies have reported hematological parameters as biomarkers for diseases with inflammatory processes. However, the diagnostic value of hematological parameters in rosacea remains a puzzle. This study involved 462 patients with rosacea, including erythematotelangiectatic rosacea (ETR, n = 179), papulopustular rosacea (PPR, n = 250), and phymatous rosacea (PhR, n = 33), and 924 healthy control subjects. Demographic, clinical, and laboratory information was collected and compared between rosacea subtypes. The hematological parameters of the patients and the healthy controls were compared retrospectively. The platelet volume (MPV) and platelet crit (PCT) were significantly upregulated, and the lower red cell distribution width (RDW) was significantly downregulated in rosacea compared to healthy controls, and they were identified as the diagnostic biomarkers for rosacea with area under the curve values of 0.828, 0.742, and 0.787, respectively. Comparing the hematological parameters among the three rosacea subtypes, we found that platelet-to-lymphocyte ratio and platelet-to-neutrophil ratio values in the ETR group were significantly higher than those in the PPR and PhR groups. The correlation between hematological parameters and clinical scores showed that RDW was negatively correlated with the Clinician Erythema Assessment score. However, there was no significant correlation between the Investigator Global Assessment score and hematological parameters. In conclusion, PCT, MPV, and RDW have diagnostic value for rosacea, and RDW is correlated with the severity of rosacea erythema, implying the potential applications of PCT, MPV, and RDW in the diagnosis and monitoring of rosacea.


Assuntos
Biomarcadores , Índices de Eritrócitos , Rosácea , Humanos , Rosácea/diagnóstico , Rosácea/sangue , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Biomarcadores/sangue , Estudos Retrospectivos , Estudos de Casos e Controles , Volume Plaquetário Médio , Idoso , Adulto Jovem , Plaquetas , Neutrófilos
11.
Redox Biol ; 70: 103055, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38290385

RESUMO

Nanozymes with superior antioxidant properties offer new hope for treating oxidative stress-related inflammatory skin diseases. However, lacking sufficient catalytic activity or having complex material designs limit the application of current metallic nanozymes in inflammatory skin diseases. Here, we report a simple and effective twin-defect platinum nanowires (Pt NWs) enzyme with multiple mimetic enzymes and broad-spectrum ROS scavenging capability for the treatment of inflammatory skin diseases in mice (including psoriasis and rosacea). Pt NWs with simultaneous superoxide dismutase, glutathione peroxidase and catalase mimetic enzyme properties exhibit cytoprotective effects against ROS-mediated damage at extremely low doses and significantly improve treatment outcomes in psoriasis- and rosacea-like mice. Meanwhile, these ultrasmall sizes of Pt NWs allow the nanomaterials to effectively penetrate the skin and do not produce significant biotoxicity. Therefore, Pt NWs have potential applications in treating diseases related to oxidative stress or inflammation.


Assuntos
Dermatite , Nanofios , Psoríase , Rosácea , Animais , Camundongos , Espécies Reativas de Oxigênio , Antioxidantes/farmacologia
12.
J Invest Dermatol ; 144(1): 33-42.e2, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37437773

RESUMO

Recent efforts have described the transcriptomic landscape of rosacea. However, little is known about its proteomic characteristics. In this study, the proteome and phosphoproteome of lesional skin, paired nonlesional skin, and healthy skin were analyzed by liquid chromatography coupled with tandem mass spectrometry. The molecular characteristics and potential pathogenic mechanism of rosacea were demonstrated by integrating the proteome, phosphoproteome, and previous transcriptome. The proteomic data revealed a significant upregulation of inflammation- and axon extension-related proteins in lesional skin and nonlesional skin versus in healthy skin, implying an inflammatory and nerve-hypersensitive microenvironment in rosacea skin. Of these, axon-related proteins (DPYSL2 and DBNL) were correlated with the Clinician's Erythema Assessment score, and neutrophil-related proteins (ELANE and S100A family) were correlated with the Investigator's Global Assessment score. Moreover, comorbidity-related proteins were differentially expressed in rosacea; of these, SNCA was positively correlated with Clinician's Erythema Assessment score, implying a potential correlation between rosacea and comorbidities. Subsequently, the integrated proteome and transcriptome demonstrated consistent immune disturbances at both the transcriptional and protein levels. The integrative analysis of the proteome and phosphoproteome revealed the key transcription factor network and kinase network that drive the dysregulation of immunity and vasculature in rosacea. In conclusion, our multiomics analysis enables more comprehensive insight into rosacea and offers an opportunity for, to our knowledge, previously unreported treatment strategies.


Assuntos
Proteoma , Rosácea , Humanos , Multiômica , Proteômica , Rosácea/metabolismo , Eritema
13.
Exp Dermatol ; 33(1): e14812, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37086043

RESUMO

Rosacea is a complex chronic inflammatory skin disorder with high morbidity. Pyroptosis is known as a regulated inflammatory cell death. While its association with immune response to various inflammatory disorders is well established, little is known about its functional relevance of rosacea. So, we aimed to explore and enrich the pathogenesis involved in pyroptosis-related rosacea aggravations. In this study, we evaluated the pyroptosis-related patterns of rosacea by consensus clustering analysis of 45 ferroptosis-related genes (FRGs), with multiple immune cell infiltration analysis to identify the pyroptosis-mediated immune response in rosacea using GSE65914 dataset. The co-co-work between PRGs and WGCNA-revealed hub genes has established using PPI network. FRG signature was highlighted in rosacea using multi-transcriptomic and experiment analysis. Based on this, three distinct pyroptosis-related rosacea patterns (non/moderate/high) were identified, and the notably enriched pathways have revealed through GO, KEGG and GSEA analysis, especially immune-related pathways. Also, the XCell/MCPcount/ssGSEA/Cibersort underlined the immune-related signalling (NK cells, Monocyte, Neutrophil, Th2 cells, Macrophage), whose hub genes were identified through WGCNA (NOD2, MYD88, STAT1, HSPA4, CXCL8). Finally, we established a pyroptosis-immune co-work during the rosacea aggravations. FRGs may affect the progression of rosacea by regulating the immune cell infiltrations. In all, pyroptosis with its mediated immune cell infiltration is a critical factor during the development of rosacea.


Assuntos
Piroptose , Rosácea , Humanos , Piroptose/genética , Rosácea/genética , Pele , Proteínas Adaptadoras de Transdução de Sinal , Perfilação da Expressão Gênica
14.
Medicine (Baltimore) ; 102(34): e34741, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37653738

RESUMO

Cuproptosis, an unusual type of programmed cell death mechanism of cell death, involved the disruption of specific mitochondrial metabolic enzymes in the occurrence and development of tumors. However, it was still unclear how the relationship between cuproptosis-related genes (CRGs) may contribute to hepatocellular carcinoma (HCC) potential the prognosis of HCC remained limited. Here, the landscape of 14 CRGs in HCC was evaluated using the Cancer Genome Atlas and International Cancer Genome Consortium datasets. And then, 4 CRGs (ATP7A, MTF1, GLS, and CDKN2A) were screened for the construction of risk signatures for prognosis and drug therapy. The HCC patients with CRGs high-risk showed poor prognosis than those with low risk. Moreover, the CRGs risk signature was shown to be an independent prognostic factor and associated with the immune microenvironment in HCC. Meanwhile, we constructed and verified a prognostic model based on cuproptosis-related lncRNAs (Cr-lncRNAs). We obtained 291 Cr-lncRNAs and constructed Cr-lncRNA prognosis signature based on 3 key Cr-lncRNAs (AC026356.1, NRAV, AL031985.3). The Cr-lncRNA prognosis signature was also an independent prognostic factor and associated with the immune microenvironment in HCC. Finally, the drug sensitivity database showed that 8 candidate drugs related to CRGs signature and Cr-lncRNAs signature. In summary, we evaluated and validated the CRGs and Cr-lncRNAs as potential predictive markers for prognosis, immunotherapy, and drug candidate with the personalized diagnosis and treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Cobre , Neoplasias Hepáticas , RNA Longo não Codificante , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Imunoterapia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Prognóstico , Microambiente Tumoral/genética , Apoptose
15.
Am J Transl Res ; 15(6): 4203-4227, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37434816

RESUMO

OBJECTIVES: To evaluate the role and biological function of nucleic acid binding protein 2 (NABP2) in hepatocellular carcinoma (HCC). METHODS: Our study was based on comprehensive bioinformatics methods and functional analysis experiments using HCC cells to reveal the expression of NABP2, the prognostic role of NABP2, the relationship between NABP2 and the infiltration of immune cells and the expression of immune-related cytokines, potential effective drugs against HCC, and the biological function of NABP2 in HCC. RESULTS: Our results indicated that NABP2 expression was markedly elevated in HCC, which suggested a worse prognosis and shorter survival time in HCC patients. Moreover, NABP2 was an independent prognostic factor and was associated with cancer-related signal pathways in HCC. Further functional analysis showed that knockdown of NABP2 dramatically inhibited proliferation and migration, and promoted apoptosis of HCC cells. Subsequently, we identified NABP2-related genes and NABP2-related clusters. Next, we constructed a NABP2-related risk signature based on differentially expressed genes that were responsible for NABP2-related clusters. We found that the risk signature was an independent prognostic factor for patients with HCC that was associated with dysregulated immune infiltration. Finally, drug sensitivity analysis revealed eight potentially effective drugs for beneficial treatment options for HCC patients with high-risk scores. CONCLUSIONS: These findings indicated that NABP2 is a prognostic biomarker and therapeutic target for HCC, and a NABP2-related risk signature could guide clinicians to judge the prognosis and suggest drug treatments for HCC patients.

16.
Nat Commun ; 14(1): 3958, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37402769

RESUMO

Rosacea is a chronic inflammatory skin disorder with high incidence rate. Although genetic predisposition to rosacea is suggested by existing evidence, the genetic basis remains largely unknown. Here we present the integrated results of whole genome sequencing (WGS) in 3 large rosacea families and whole exome sequencing (WES) in 49 additional validation families. We identify single rare deleterious variants of LRRC4, SH3PXD2A and SLC26A8 in large families, respectively. The relevance of SH3PXD2A, SLC26A8 and LRR family genes in rosacea predisposition is underscored by presence of additional variants in independent families. Gene ontology analysis suggests that these genes encode proteins taking part in neural synaptic processes and cell adhesion. In vitro functional analysis shows that mutations in LRRC4, SH3PXD2A and SLC26A8 induce the production of vasoactive neuropeptides in human neural cells. In a mouse model recapitulating a recurrent Lrrc4 mutation from human patients, we find rosacea-like skin inflammation, underpinned by excessive vasoactive intestinal peptide (VIP) release by peripheral neurons. These findings strongly support familial inheritance and neurogenic inflammation in rosacea development and provide mechanistic insight into the etiopathogenesis of the condition.


Assuntos
Inflamação Neurogênica , Rosácea , Animais , Camundongos , Humanos , Sequenciamento Completo do Genoma , Mutação , Predisposição Genética para Doença , Rosácea/genética , Proteínas do Tecido Nervoso/genética
17.
Front Pharmacol ; 14: 1092473, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937834

RESUMO

Background: Rosacea is a common facial skin inflammatory disease featured by hyperactivation of mTORC1 signaling in the epidermis. Due to unclear pathogenesis, the effective treatment options for rosacea remain limited. Methods: Weighted gene co-expression network analysis (WGCNA) analyzed the relationship between epidermis autophagy and mTOR pathways in rosacea, and further demonstrated it through immunofluorescence and qPCR analysis. A potential therapeutic agent for rosacea was predicted based on the key genes of the WGCNA module. In vivo and in vitro experiments were conducted to verify its therapeutic role. Drug-target prediction (TargetNet, Swiss, and Tcmsp) and molecular docking offered potential pharmacological targets. Results: WGCNA showed that epidermis autophagy was related to the activation of mTOR pathways in rosacea. Next, autophagy was downregulated in the epidermis of rosacea, which was regulated by mTOR. In addition, the in vivo experiment demonstrated that autophagy induction could be an effective treatment strategy for rosacea. Subsequently, based on the key genes of the WGCNA module, epigallocatechin-3-gallate (EGCG) was predicted as a potential therapeutic agent for rosacea. Furthermore, the therapeutic role of EGCG on rosacea was confirmed in vivo and in vitro. Finally, drug-target prediction and molecular docking revealed that AKT1/MAPK1/MMP9 could be the pharmacological targets of EGCG in rosacea. Conclusion: Collectively, our findings revealed the vital role of autophagy in rosacea and identified that EGCG, as a therapeutic agent for rosacea, attenuated rosacea-like inflammation via inducing autophagy in keratinocytes.

18.
J Eur Acad Dermatol Venereol ; 37(4): 796-809, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36367676

RESUMO

BACKGROUND: Rosacea is a chronic inflammatory skin disease with increased macrophage infiltration. However, the molecular mechanism remains unclear. OBJECTIVES: To determine the significance of macrophage infiltration, and the correlation between Guanylate-binding protein 5 (GBP5) and polarization of macrophages in rosacea-like inflammation. METHODS: Here we tested the hypothesis that Guanylate-binding protein 5 (GBP5) aggravates rosacea-like skin inflammation by promoting the polarization of the M1 macrophages through the NF-κB signalling pathway. We depleted macrophage by injecting clodronate-containing liposomes. We next explored the association between GBP5 and macrophage in rosacea tissue through transcriptome analysis and immunofluorescence analysis. We evaluated the severity of rosacea-like skin inflammation when BALB/c mice were injected with GBP5 siRNA intradermally daily for three consecutive days. At last, to study the causality of knocking down GBP5-blunted M1 macrophage polarization, THP-1 cell was treated with GBP5 siRNA. RESULTS: Macrophage depletion ameliorated rosacea-like skin inflammation in mice, implying the important role of macrophages in rosacea. Based on the transcriptome analysis, Guanylate-binding protein 5 (GBP5) was identified as hub gene that was associated with macrophage infiltration in rosacea. Next, we found that GBP5 expression was significantly upregulated in rosacea tissues and positively correlated with macrophage infiltration, the immunofluorescence analysis revealed the co-localization between GBP5 and macrophages. In vivo, silencing of GBP5 attenuated rosacea-like skin inflammation in the LL-37-induced mouse model and suppressed the expression of M1 signature genes such as IL-6, iNOS and TNF-a. In vitro, knocking down GBP5 significantly blunted the polarization of the M1 macrophages partly by repressing the activation of the NF-κB signalling pathways. CONCLUSIONS: Together, our study revealed the important role of macrophages in rosacea and identified GBP5 as a key regulator of rosacea by inducing M1 macrophage polarization via NF-κB signalling pathways.


Assuntos
Proteínas de Ligação ao GTP , NF-kappa B , Rosácea , Animais , Camundongos , Dermatite/genética , Dermatite/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Inflamação , Macrófagos/metabolismo , NF-kappa B/metabolismo , Fenótipo , RNA Interferente Pequeno , Rosácea/genética , Rosácea/metabolismo
19.
Front Genet ; 13: 881051, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36081986

RESUMO

Background: Aging is characterized by the gradual loss of physiological integrity, resulting in impaired function and easier death. This deterioration is a major risk factor for major human pathological diseases, including cancer, diabetes, cardiovascular disease and neurodegenerative diseases. It is very important to find biomarkers that can prevent aging. Methods: Q-Exactive-MS was used for proteomic detection of young and senescence fibroblast. The key senescence-related molecules (SRMs) were identified by integrating transcriptome and proteomics from aging tissue/cells, and the correlation between these differentially expressed genes and well-known aging-related pathways. Next, we validated the expression of these molecules using qPCR, and explored the correlation between them and immune infiltrating cells. Finally, the enriched pathways of the genes significantly related to the four differential genes were identified using the single cell transcriptome. Results: we first combined proteomics and transcriptome to identified four SRMs. Data sets including GSE63577, GSE64553, GSE18876, GSE85358, and qPCR confirmed that ETF1, PLBD2, ASAH1, and MOXD1 were identified as SRMs. Then the correlation between SRMs and aging-related pathways was excavated and verified. Next, we verified the expression of SRMs at the tissue level and qPCR, and explored the correlation between them and immune infiltrating cells. Finally, at the single-cell transcriptome level, we verified their expression and explored the possible pathway by which they lead to aging. Briefly, ETF1 may affect the changes of inflammatory factors such as IL-17, IL-6, and NFKB1 by indirectly regulating the enrichment and differentiation of immune cells. MOXD1 may regulate senescence by affecting the WNT pathway and changing the cell cycle. ASAH1 may affect development and regulate the phenotype of aging by affecting cell cycle-related genes. Conclusion: In general, based on the analysis of proteomics and transcriptome, we identified four SRMs that may affect aging and speculated their possible mechanisms, which provides a new target for preventing aging, especially skin aging.

20.
Redox Biol ; 55: 102427, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35952475

RESUMO

Reactive oxygen species (ROS)-activated proinflammatory signals in keratinocytes play a crucial role in the immunoregulation of inflammatory skin diseases, including rosacea and psoriasis. Nav1.8 is a voltage-gated sodium ion channel, and its abnormal expression in the epidermal layer contributes to pain hypersensitivity in the skin. However, whether and how epidermal Nav1.8 is involved in skin immunoregulation remains unclear. This study was performed to identify the therapeutic role of Nav1.8 in inflammatory skin disorders. We found that Nav1.8 expression was significantly upregulated in the epidermis of rosacea and psoriasis skin lesions. Nav1.8 knockdown ameliorated skin inflammation in LL37-and imiquimod-induced inflammation mouse models. Transcriptome sequencing results indicated that Nav1.8 regulated the expression of pro-inflammatory mediators (IL1ß and IL6) in keratinocytes, thereby contributing to immune infiltration in inflammatory skin disorders. In vitro, tumor necrosis factor alpha (TNFα), a cytokine that drives the development of various inflammatory skin disorders, increased Nav1.8 expression in keratinocytes. Knockdown of Nav1.8 eliminated excess ROS production, thereby attenuating the TNFα-induced production of inflammatory mediators; however, a Nav1.8 blocker did not have the same effect. Mechanistically, Nav1.8 reduced superoxide dismutase 2 (SOD2) activity by directly binding to SOD2 to prevent its deacetylation and mitochondrial localization, subsequently inducing ROS accumulation. Collectively, our study describes a central role for Nav1.8 in regulating pro-inflammatory responses in the skin and indicates a novel therapeutic strategy for rosacea and psoriasis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA