Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 25(2): 796-812, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177920

RESUMO

Although many long noncoding RNAs have been discovered in plants, little is known about their biological function and mode of action. Here we show that the drought-induced long intergenic noncoding RNA DANA1 interacts with the L1p/L10e family member protein DANA1-INTERACTING PROTEIN 1 (DIP1) in the cell nucleus of Arabidopsis, and both DANA1 and DIP1 promote plant drought resistance. DANA1 and DIP1 increase histone deacetylase HDA9 binding to the CYP707A1 and CYP707A2 loci. DIP1 further interacts with PWWP3, a member of the PEAT complex that associates with HDA9 and has histone deacetylase activity. Mutation of DANA1 enhances CYP707A1 and CYP707A2 acetylation and expression resulting in impaired drought tolerance, in agreement with dip1 and pwwp3 mutant phenotypes. Our results demonstrate that DANA1 is a positive regulator of drought response and that DANA1 works jointly with the novel chromatin-related factor DIP1 on epigenetic reprogramming of the plant transcriptome during the response to drought.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , RNA Longo não Codificante , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Histonas/metabolismo , Resistência à Seca , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Secas , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Regulação da Expressão Gênica de Plantas
2.
STAR Protoc ; 5(1): 102856, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38285736

RESUMO

Analyses of long non-coding RNA (lncRNA)-protein interactions provide key clues for understanding the molecular basis of lncRNA-modulated biological processes. Here, we detail a yeast three-hybrid assay to identify the lncRNA-interacting protein. We describe steps for lncRNA bait preparation, screening an RNA-binding proteins (RBPs) cDNA library, and validation of the lncRNA-RBP interaction. The assay can also be further applied to delineate the region of RBP that mediates the RNA-protein interaction. For complete details on the use and execution of this protocol, please refer to Zhang et al.1.


Assuntos
RNA Longo não Codificante , Técnicas do Sistema de Duplo-Híbrido , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Biblioteca Gênica
3.
Molecules ; 28(24)2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38138523

RESUMO

The explorations of new three-dimensional (3D) microporous metal halides, especially the iodoargentate-based hybrids, and understanding of their structure-activity relationships are still quite essential but full of great challenges. Herein, with the aromatic 4,4'-dpa (4,4'-dpa = 4,4'-dipyridylamine) ligands as the structural directing agents, we solvothermal synthesized and structurally characterized a novel member of microporous iodoargentate family, namely [H2-4,4'-dpa]Ag6I8 (1). Compound 1 possesses a unique and complicated 3D [Ag6I8]n2n- anionic architecture that was built up from the unusual hexameric [Ag6I13] secondary building units (SBUs). Research on optical properties indicated that compound 1 exhibited semiconductor behavior, with an optical band gap of 2.50 eV. Under the alternate irradiation of light, prominent photoelectric switching abilities could be achieved by compound [H2-4,4'-dpa]Ag6I8, whose photocurrent densities (0.37 µA·cm-2 for visible light and 1.23 µA·cm-2 for full-spectrum) compared well with or exceeded those of some high-performance halide counterparts. Further theoretical calculations revealed that the relatively dispersed conduction bands (CBs) structures in compound 1 induced higher electron mobilities, which may be responsible for its good photoelectricity. Presented in this work also comprised the analyses of Hirshfeld surface, powder X-ray diffractometer (PXRD), thermogravimetric measurement, energy-dispersive X-ray spectrum (EDX) along with X-ray photoelectron spectroscopy (XPS).

5.
Inorg Chem ; 62(32): 12843-12850, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37534778

RESUMO

The fast and efficient removal of 137Cs+ ions from water is of great significance for the further treatment and disposal of highly active nuclear waste. Hitherto, although many layered metal sulfides have been proven to be very effective in capturing aqueous cesium, three-dimensional (3D) microporous examples have rarely been explored, especially compounds that are systematically used to study cesium ion exchange behaviors. In this paper, we present detailed Cs+ ion exchange properties of a 3D, microporous, zeolitic-like sulfide, namely K@GaSnS-1, in different conditions. Isotherm studies indicate that K@GaSnS-1 has a high cesium saturation capacity of 249.3 mg/g. In addition, it exhibits rapid sorption kinetics, with an equilibrium time of only 2 min. Further studies show that K@GaSnS-1 also displays a strong preference and good selectivity for cesium, with the highest distribution coefficient Kd value up to 3.53 × 104 mL/g. Also noteworthy is that the excellent cesium ion exchange properties are well-maintained despite acidic, basic, and competitive multiple-component environments. More importantly, the Cs+-exchanged products can be easily eluted and regenerated by a low-cost and eco-friendly method. These merits demonstrated by K@GaSnS-1 render it very promising in the effective and efficient separation of radioactive cesium from nuclear waste.

6.
Materials (Basel) ; 16(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37445036

RESUMO

The elastic modulus of traditional solid titanium alloy tibial implants is much higher than that of human bones, which can cause stress shielding. Designing them as a porous structure to form a bone-like trabecular structure effectively reduces stress shielding. However, the actual loading conditions of bones in different parts of the human body have not been considered for some trabecular structures, and their mechanical properties have not been considered concerning the personalized differences of other patients. Therefore, based on the elastic modulus of the tibial stem obtained from Quantitative Computed Tomography (QCT) imaging between 3.031 and10.528 GPa, and the load-bearing state of the tibia at the knee joint, a porous structure was designed under compressive and shear loading modes using topology optimization. Through comprehensive analysis of the mechanical and permeability properties of the porous structure, the results show that the Topology Optimization-Shear-2 (TO-S2) structure has the best compressive, shear mechanical properties and permeability and is suitable as a trabecular structure for tibial implants. The Gibson-Ashby model was established to control the mechanical properties of porous titanium alloy. A gradient filling of porous titanium alloy with a strut diameter of 0.106-0.202 mm was performed on the tibial stem based on the elastic modulus range, achieving precise matching of the mechanical properties of tibial implants and closer to the natural structure than uniformly distributed porous structures in human bones. Finally, the new tibial implant was printed by selective laser melting (SLM), and the molding effect was excellent.

7.
Materials (Basel) ; 15(17)2022 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-36079522

RESUMO

The acetabular cups used in total hip arthroplasty are mostly made of dense metal materials with an elastic moduli much higher than that of human bone. This leads to stress shielding after implantation, which may cause aseptic loosening of the implant. Selective laser melting (SLM) technology allows us to produce tiny and complex porous structures and to reduce the elastic moduli of dense metals, thereby avoiding stress shielding. In the present study, rhombic dodecahedron porous structures with cell sizes of 1 mm, 1.5 mm, and 2 mm were designed. The strut diameter was changed to ensure that the porosity and pore size would meet the bone ingrowth requirements. Then, porous Ti6Al4V alloy specimens were printed using SLM, and compressive tests were carried out. The results showed that the compressive strength and elastic modulus values of the specimens with a cell size of 1.5 mm were in the range of 78.16-242.94 MPa and 1.74-4.17 GPa, respectively, which are in line with the mechanical properties of human cortical bone. Finite element analysis of a total hip joint model was carried out to simulate gait, and the surface of the trabecular acetabular cup was divided into 10 regions according to the stress distribution, with the stress interval in the range of 37.44-219.24 MPa. According to the compression test results, the gradient structure of Ti6Al4V alloy with different porosity was designed for trabecular coating. The gradient porous structure meets the mechanical requirements and is closer to the natural structure of human bone than the uniformly distributed porous structure.

8.
Materials (Basel) ; 15(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35591459

RESUMO

In the performance optimization of the additive manufacturing of Ti6Al4V components, conventional control methods have difficulty taking into account the requirements of quality and mechanical properties of components, resulting in insufficient mechanical properties and a small control range. Therefore, combining the advantages of porous structure and alloy composition control, this paper proposed a structure-composition composite control method for selective laser-fused titanium alloy components by coupling the effects of porous structure parameters and boron content on the properties of Ti6Al4V components. Based on the Gibson-Ashby formula, the compression test of porous Ti6Al4V alloy and the tensile test of boron-containing Ti6Al4V alloy were carried out by SLM forming technology. The parameters C and n related to the pore parameters of porous structure were solved by the experimental data, and the analytical relationship between the pore parameters and the mechanical properties of Ti6Al4V alloy was established. The analytical relationship between boron content (t wt%) and mechanical properties of the alloy was established by tensile test. Finally, the Gibson-Ashby formula was used to combine the above analytical relationship, and a composite regulation model of compressive strength was obtained. The results show that the control range of the composite model ranges from 19.46-416.47 MPa, which was 45.53% higher than that obtained by controlling only pore parameters, and performance improved by 42.49%. The mechanical properties of the model are verified and the deviation between calculated values and experimental values was less than 1.3%. Taking aviation rocker arm as an example, the optimized design can improve the strength and reduce the mass of rocker arm by 51.94%. This method provides a theoretical basis for expanding the application of Ti6Al4V additive manufacturing components in aerospace and other fields.

9.
J Sci Food Agric ; 96(11): 3853-9, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26689292

RESUMO

BACKGROUND: Microbial contamination is a vital obstacle needed to overcome for food safety of condiments. Radio frequency (RF) pasteurisation is a new technology to solve this obstacle. Temperature distribution and heating uniformity of sample, which are influenced by different factors, are the most important things affecting the nutritional ingredients and microbial safety of sample in the process of RF pasteurisation. This study demonstrated the location of cold spot in chili powder by analysing temperature distribution in horizontal and vertical direction. The related models were established and the accuracy was verified. RESULTS: Cold spot located on the centre of sample surface in the process of RF pasteurisation. The averaged temperature of sample increased linearly. The uniformity index decreased as the averaged temperature increased. Both the correlation coefficient of two equations were greater than 0.91. The error value of heating rate and heating uniformity index was 0.54% and 0.75% between the measured value and predicted value. CONCLUSION: Electric field was not uniformly distributed between RF parallel-plate electrodes in the RF pasteurisation of chili powder. The heating models were reliable to predict experiment results with high precision and accuracy. © 2015 Society of Chemical Industry.


Assuntos
Capsicum/química , Frutas/química , Modelos Químicos , Pasteurização/métodos , Ondas de Rádio , Especiarias/análise , Algoritmos , Capsicum/economia , Capsicum/efeitos da radiação , China , Eletrodos , Frutas/microbiologia , Frutas/efeitos da radiação , Temperatura Alta/efeitos adversos , Humanos , Cinética , Valor Nutritivo , Pasteurização/instrumentação , Projetos Piloto , Ondas de Rádio/efeitos adversos , Reprodutibilidade dos Testes , Especiarias/economia , Especiarias/microbiologia , Especiarias/efeitos da radiação , Propriedades de Superfície , Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA