Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Phys Chem Lett ; 15(14): 3835-3842, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38557032

RESUMO

Perovskite solar cells, emerging as a cutting-edge solar energy technology, have demonstrated a power conversion efficiency (PCE) of >26%, which is below the theoretical limit of 33%. This study, employing a combination of neural network models and high-throughput simulation calculations, taking the single-junction FAPbI3 cell as an illustrative example, indicates that a pyramid structure, in comparison of a planar one, can increase the highest Jsc to 27.4 mA/cm2 and the PCE to 28.4%. Both Jsc and PCE surpass the currently reported experimental results. The optimized periodicity and tilt angle of the pyramid structure align with the textured structure of crystalline silicon solar cells. These results underscore the substantial development potential of neural network inverse design based on high-throughput calculations in the field of optoelectronic devices and provide theoretical guidance for the design of monolithic perovskite-silicon tandem solar cells.

2.
Redox Biol ; 71: 103118, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490069

RESUMO

The induction of ferroptosis is promising for cancer therapy. However, the mechanisms enabling cancer cells to evade ferroptosis, particularly in low-cystine environments, remain elusive. Our study delves into the intricate regulatory mechanisms of Activating transcription factor 3 (ATF3) on Cystathionine ß-synthase (CBS) under cystine deprivation stress, conferring resistance to ferroptosis in colorectal cancer (CRC) cells. Additionally, our findings establish a positively correlation between this signaling axis and CRC progression, suggesting its potential as a therapeutic target. Mechanistically, ATF3 positively regulates CBS to resist ferroptosis under cystine deprivation stress. In contrast, the suppression of CBS sensitizes CRC cells to ferroptosis through targeting the mitochondrial tricarboxylic acid (TCA) cycle. Notably, our study highlights that the ATF3-CBS signaling axis enhances ferroptosis-based CRC cancer therapy. Collectively, the findings reveal that the ATF3-CBS signaling axis is the primary feedback pathway in ferroptosis, and blocking this axis could be a potential therapeutic approach for colorectal cancer.


Assuntos
Neoplasias Colorretais , Ferroptose , Humanos , Cistationina beta-Sintase/metabolismo , Fator 3 Ativador da Transcrição/genética , Fator 3 Ativador da Transcrição/metabolismo , Ferroptose/genética , Cistina , Carcinogênese/genética , Transformação Celular Neoplásica , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo
3.
Redox Biol ; 71: 103087, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38377789

RESUMO

Ferroptosis, an iron-dependent lipid peroxidation-induced form of regulated cell death, shows great promise as a cancer therapy strategy. Despite the critical role of mitochondria in ferroptosis regulation, the underlying mechanisms remain elusive. This study reveals that the mitochondrial protein METTL17 governs mitochondrial function in colorectal cancer (CRC) cells through epigenetic modulation. Bioinformatic analysis establishes that METTL17 expression positively correlates with ferroptosis resistance in cancer cells and is up-regulated in CRC. Depletion of METTL17 sensitizes CRC cells to ferroptosis, impairs cell proliferation, migration, invasion, xenograft tumor growth, and AOM/DSS-induced CRC tumorigenesis. Furthermore, suppression of METTL17 disrupts mitochondrial function, energy metabolism, and enhances intracellular and mitochondrial lipid peroxidation and ROS levels during ferroptotic stress. Mechanistically, METTL17 inhibition significantly reduces mitochondrial RNA methylation, including m4C, m5C, m3C, m7G, and m6A, leading to impaired translation of mitochondrial protein-coding genes. Additionally, the interacting proteins associated with METTL17 are essential for mitochondrial gene expression, and their knockdown sensitizes CRC cells to ferroptosis and inhibits cell proliferation. Notably, combined targeting of METTL17 and ferroptosis in a therapeutic approach effectively suppresses CRC xenograft growth in vivo. This study uncovers the METTL17-mediated defense mechanism for cell survival and ferroptosis in mitochondria, highlighting METTL17 as a potential therapeutic target for CRC.


Assuntos
Neoplasias Colorretais , Ferroptose , Humanos , Carcinogênese/genética , Transformação Celular Neoplásica , Neoplasias Colorretais/genética , Ferroptose/genética , Metiltransferases/genética , Proteínas Mitocondriais/genética , Animais
4.
Viruses ; 15(10)2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37896794

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic is still ongoing, with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continuing to evolve and accumulate mutations. While various bioinformatics tools have been developed for SARS-CoV-2, a well-curated mutation-tracking database integrated with in silico evaluation for molecular diagnostic assays is currently unavailable. To address this, we introduce CovidShiny, a web tool that integrates mutation profiling, in silico evaluation, and data download capabilities for genomic sequence-based SARS-CoV-2 assays and data download. It offers a feasible framework for surveilling the mutation of SARS-CoV-2 and evaluating the coverage of the molecular diagnostic assay for SARS-CoV-2. With CovidShiny, we examined the dynamic mutation pattern of SARS-CoV-2 and evaluated the coverage of commonly used assays on a large scale. Based on our in silico analysis, we stress the importance of using multiple target molecular diagnostic assays for SARS-CoV-2 to avoid potential false-negative results caused by viral mutations. Overall, CovidShiny is a valuable tool for SARS-CoV-2 mutation surveillance and in silico assay design and evaluation.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Mutação , Teste para COVID-19 , Pandemias
5.
Nano Lett ; 23(12): 5738-5745, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37294577

RESUMO

The operational stability of the blue quantum dot light-emitting diode (QLED) has been one of the most important obstacles to initialize its industrialization. In this work, we demonstrate a machine learning assisted methodology to illustrate the operational stability of blue QLEDs by analyzing the measurements of over 200 samples (824 QLED devices) including current density-voltage-luminance (J-V-L), impedance spectra (IS), and operational lifetime (T95@1000 cd/m2). The methodology is able to predict the operational lifetime of the QLED with a Pearson correlation coefficient of 0.70 with a convolutional neural network (CNN) model. By applying a classification decision tree analysis of 26 extracted features of J-V-L and IS curves, we illustrate the key features in determining the operational stability. Furthermore, we simulated the device operation using an equivalent circuit model to discuss the device degradation related operational mechanisms.

6.
Microbiol Spectr ; 10(5): e0322222, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36106882

RESUMO

Rapid identification and continuous surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants are critical for guiding the response to the COVID-19 pandemic. Whole-genome sequencing (WGS) is a preferred tool for this aim, but many laboratories suffer from a lack of resources to support population-level sequencing. Here, we describe two PCR strategies targeting spike protein mutations to identify the Alpha, Delta, and Omicron variants. Signature mutations were selected using a dedicated bioinformatic program. The selected mutations in Alpha and Delta variants were detected using multicolor melting curve analysis (MMCA). Thirty-two mutations of the Omicron variant were targeted using the MeltArray approach in one reaction, which was able to detect the Omicron subvariants BA.1, BA.2, BA.3, and BA.4/5. The limits of detection varied from five to 50 copies of RNA templates/reactions. No cross-reactivity was observed with nine other respiratory viruses, including other coronaviruses. We validated the MMCA and MeltArray assays using 309 SARS-CoV-2 positive samples collected at different time points. These assays exhibited 98.3% to 100% sensitivity and 100% specificity compared with WGS. Multiplexed real-time PCR strategies represent an alternative tool capable of identifying current SARS-CoV-2 VOCs, adaptable for emerging variants and accessible for laboratories using existing equipment and personnel. IMPORTANCE Rapid detection and mutation surveillance of SARS-CoV-2 VOCs is crucial for COVID-19 control, management, and prevention. We developed two rapid molecular assays based on the real-time PCR platform to identify important variants of concern, including the Omicron variant with a large number of mutations. Signature mutations were selected by an R program. Then, MMCA assays were established for Alpha and Delta variants, and a MeltArray assay targeting 32 mutations was developed for Omicron variant. These multiplexed PCR assays could be performed in a 96-well real-time PCR instrument within 2.5 h, offering a high-throughput choice for dynamic monitoring of SARS-CoV-2 VOCs in a standard microbiology laboratory.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Reação em Cadeia da Polimerase em Tempo Real , RNA Viral/genética , RNA Viral/análise , Pandemias , Glicoproteína da Espícula de Coronavírus/genética , COVID-19/diagnóstico , Mutação
7.
Opt Lett ; 47(18): 4660-4663, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36107057

RESUMO

High diffractive efficiency gratings, as a core component in optics, can engineer light transport and separation. This Letter predicts a grating surface with high diffractive efficiency within the visible light wave band with the aid of deep neural networks (DNNs). The predicted grating surface can have more than 99% diffractive efficiency for the -1th order within the bandwidth of ∼100 nm in the visible wave band, outperforming previously reported structures. Accordingly, the strategy of the DNN-aided design is an efficient and feasible method for optical devices. Moreover, changing the period of the predicted grating surfaces can shift the workable wave band, not only exhibiting the tunability but also bringing about the predicted gratings with more than 90% diffractive efficiency within the whole visible light wave band.


Assuntos
Redes Neurais de Computação , Dispositivos Ópticos , Luz
8.
PLoS One ; 17(5): e0268787, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35587945

RESUMO

Emerging evidence implicates the eicosanoid molecule prostaglandin E2 (PGE2) in conferring a regenerative phenotype to multiple organ systems following tissue injury. As aging is in part characterized by loss of tissue stem cells' regenerative capacity, we tested the hypothesis that the prostaglandin-degrading enzyme 15-hydroxyprostaglandin dehydrogenase (15-PGDH) contributes to the diminished organ fitness of aged mice. Here we demonstrate that genetic loss of 15-PGDH (Hpgd) confers a protective effect on aging of murine hematopoietic and gastrointestinal (GI) tissues. Aged mice lacking 15-PGDH display increased hematopoietic output as assessed by peripheral blood cell counts, bone marrow and splenic stem cell compartments, and accelerated post-transplantation recovery compared to their WT counterparts. Loss of Hpgd expression also resulted in enhanced GI fitness and reduced local inflammation in response to colitis. Together these results suggest that 15-PGDH negatively regulates aged tissue regeneration, and that 15-PGDH inhibition may be a viable therapeutic strategy to ameliorate age-associated loss of organ fitness.


Assuntos
Hidroxiprostaglandina Desidrogenases , Envelhecimento/genética , Animais , Dinoprostona/metabolismo , Hidroxiprostaglandina Desidrogenases/genética , Camundongos
9.
Oncogene ; 41(20): 2846-2859, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35418691

RESUMO

Overexpression of nuclear coactivator steroid receptor coactivator 1 (SRC-1) and aberrant activation of the Hedgehog (Hh) signaling pathway are associated with various tumorigenesis; however, the significance of SRC-1 in colorectal cancer (CRC) and its contribution to the activation of Hh signaling are unclear. Here, we identified a conserved Hh signaling signature positively correlated with SRC-1 expression in CRC based on TCGA database; SRC-1 deficiency significantly inhibited the proliferation, survival, migration, invasion, and tumorigenesis of both human and mouse CRC cells, and SRC-1 knockout significantly suppressed azoxymethane/dextran sodium sulfate (AOM/DSS)-induced CRC in mice. Mechanistically, SRC-1 promoted the expression of GLI family zinc finger 2 (GLI2), a major downstream transcription factor of Hh pathway, and cooperated with GLI2 to enhance multiple Hh-regulated oncogene expression, including Cyclin D1, Bcl-2, and Slug. Pharmacological blockages of SRC-1 and Hh signaling retarded CRC progression in human CRC cell xenograft mouse model. Together, our studies uncover an SRC-1/GLI2-regulated Hh signaling looping axis that promotes CRC tumorigenesis, offering an attractive strategy for CRC treatment.


Assuntos
Neoplasias Colorretais , Proteínas Hedgehog , Coativador 1 de Receptor Nuclear , Animais , Carcinogênese/genética , Proliferação de Células/genética , Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Hedgehog/metabolismo , Humanos , Camundongos , Proteínas Nucleares/genética , Coativador 1 de Receptor Nuclear/genética , Transdução de Sinais/fisiologia , Proteína Gli2 com Dedos de Zinco/metabolismo
10.
Opt Express ; 29(22): 35664-35677, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34808996

RESUMO

Scattering and correlation properties of a two-photon (TP) pulse are studied in a four-terminal waveguide system, i.e., two one-dimensional waveguides connected by a Jaynes-Cummings emitter (JCE). The wave function approach is utilized to exactly calculate the real-time dynamic evolution of the TP transport. When the width of the incident TP Gaussian pulse is much larger than the photon wavelength, the TP transmission spectra approach that of the corresponding single photon cases and are almost independent of the pulse width. On the contrary, as the pulse width is comparable to the photon wavelength, the TP transmission and correlation both show strong dependence on the pulse width. The resonant scattering due to the JCE and the photon interference together determine the TP correlation. When the distance between the TPs is small, the TP correlations between any two terminals for the scattered TP pulse are much different from those for the incident TP pulse and therefore, such a four-terminal waveguide system provides a way to control the TP correlation.

11.
Molecules ; 26(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34641449

RESUMO

We discovered SW033291 in a high throughput chemical screen aimed at identifying 15-prostaglandin dehydrogenase (15-PGDH) modulators. The compound exhibited inhibitory activity in in vitro biochemical and cell-based assays of 15-PGDH activity. We subsequently demonstrated that this compound, and several analogs thereof, are effective in in vivo mouse models of bone marrow transplant, colitis, and liver regeneration, where increased levels of PGE2 positively potentiate tissue regeneration. To better understand the binding of SW033291, we carried out docking studies for both the substrate, PGE2, and an inhibitor, SW033291, to 15-PGDH. Our models suggest similarities in the ways that PGE2 and SW033291 interact with key residues in the 15-PGDH-NAD+ complex. We carried out molecular dynamics simulations (MD) of SW033291 bound to this complex, in order to understand the dynamics of the binding interactions for this compound. The butyl side chain (including the sulfoxide) of SW033291 participates in crucial binding interactions that are similar to those observed for the C15-OH and the C16-C20 alkyl chain of PGE2. In addition, interactions with residues Ser138, Tyr151, and Gln148 play key roles in orienting and stabilizing SW033291 in the binding site and lead to enantioselectivity for the R-enantiomer. Finally, we compare the binding mode of (R)-S(O)-SW033291 with the binding interactions of published 15-PGDH inhibitors.


Assuntos
Hidroxiprostaglandina Desidrogenases/antagonistas & inibidores , Piridinas/química , Piridinas/farmacologia , Tiofenos/química , Tiofenos/farmacologia , Sítios de Ligação , Humanos , Simulação de Dinâmica Molecular
12.
ACS Nano ; 15(5): 8930-8939, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33988983

RESUMO

Structural coloration providing vibrant and tailored colors enables broad applications. Existing strategies of structural coloration either use resonances or diffraction induced by arrayed nanostructures with element sizes at a wavelength scale or are based on interference from vacuum-deposited large-area thin films. It is extremely challenging to achieve full color pixels with diffraction-limited resolution without sophisticated multiple-step nanostructure fabrication or externally applied field control. Realization of dynamically switchable full color displays with diffraction-limited resolution is even harder. This work demonstrates a structural color strategy with developed anisotropic graphene metapixels. The anisotropic optical property is given by the intrinsic birefringence of the layered structure of graphene metamaterials, and each metapixel is spatially encoded by direct laser printing with diffraction-limited resolution (250 nm). The colors can be dynamically and instantly switched by controlling the scattering of the light source to excite different modes based on the strong anisotropic optical properties of the graphene metapixels. The low-cost large-scale fabrication method allows experimental demonstration of a large-area (4 in.) flexible full color optical switchable display. Such a simple, effective and flexible method promises broad practical applications in color display and color image sensing related fields.

13.
Phys Rev Lett ; 125(1): 017002, 2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32678627

RESUMO

The Kohn-Luttinger mechanism for unconventional superconductivity (SC) driven by weak repulsive electron-electron interactions on a periodic lattice is generalized to the quasicrystal (QC) via a real-space perturbative approach. The repulsive Hubbard model on the Penrose lattice is studied as an example, on which a classification of the pairing symmetries is performed and a pairing phase diagram is obtained. Two remarkable properties of these pairing states are revealed, due to the combination of the presence of the point-group symmetry and the lack of translation symmetry on this lattice. First, the spin and spacial angular momenta of a Cooper pair is decorrelated: for each pairing symmetry, both spin-singlet and spin-triplet pairings are possible even in the weak-pairing limit. Second, the pairing states belonging to the 2D irreducible representations of the D_{5} point group can be time-reversal-symmetry-breaking topological SCs carrying spontaneous bulk super current and spontaneous vortices. These two remarkable properties are general for the SCs on all QCs, and are rare on periodic lattices. Our work starts the new area of unconventional SCs driven by repulsive interactions on the QC.

14.
Opt Express ; 28(7): 9136-9148, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32225526

RESUMO

Two coupled exciton-polariton condensates (EPCs) in a double-well photonic potential are suggested to form the optical Josephson oscillation (JO) whose dependences on the pump arrangement, the potential geometry, and the exciton-photon detuning are studied through the Gross-Pitaevskii equations. When the pump detuning is slightly positive with respect to the polariton energy and the phase difference between the two EPCs is near π/2 (both are controlled by the pump beams), the system demonstrates the optical JO. The optical JO tunneling strength (J) depends on the distance (d) and barrier (Λ) between the two wells, for which an empirical formula is fitted, i.e., J≈0.42exp⁡(-d Λ/18.4) with the energy and length units in meV and µm. Since the double-well potential adopted is general, this fitting relation can show a guidance in practice for designing the optical devices based on the optical JO.

15.
Oncogene ; 39(16): 3336-3353, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32094404

RESUMO

Histone demethylase JMJD2D can promote gene expression by specifically demethylating H3K9me2/3. The role of JMJD2D in colitis and colitis-associated colorectal cancer (CRC) progression remains unclear. Here, we show that colonic JMJD2D is induced by TNFα during dextran sulfate sodium-induced colitis. JMJD2D-deficient mice exhibit more severe colon damage and defective colon regeneration due to impaired Hedgehog signaling activation after colitis. JMJD2D knockdown in CRC cells suppresses Hedgehog signaling, resulting in reduced CRC growth and metastasis. Mechanistically, JMJD2D promotes Hedgehog target gene expression through interacting with Gli2 to reduce H3K9me3 levels at the promoter. Clinically, JMJD2D expression is upregulated and positively correlated with Gli2 expression in human inflammatory bowel disease specimens and CRC specimens. The JMJD2D inhibitor 5-c-8HQ or aspirin synergizes with Hedgehog inhibitor vismodegib to inhibit CRC cell proliferation and tumorigenesis. Collectively, our findings unveil an essential role of JMJD2D in activating the processes of colonic protection, regeneration, and tumorigenesis.


Assuntos
Colite/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , Inflamação/tratamento farmacológico , Histona Desmetilases com o Domínio Jumonji/genética , Anilidas/farmacologia , Animais , Aspirina/farmacologia , Carcinogênese/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colite/genética , Colite/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Proteínas Hedgehog/antagonistas & inibidores , Proteínas Hedgehog/genética , Humanos , Inflamação/genética , Inflamação/patologia , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Camundongos , Piridinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
16.
Mol Biomed ; 1(1): 9, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34765994

RESUMO

Chromatin regulatory landscape plays a critical role in many disease processes and embryo development. Epigenome sequencing technologies such as chromatin immunoprecipitation sequencing (ChIP-seq) and assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) have enabled us to dissect the pan-genomic regulatory landscape of cells and tissues in both time and space dimensions by detecting specific chromatin state and its corresponding transcription factors. Pioneered by the advancement of chromatin immunoprecipitation-chip (ChIP-chip) technology, abundant epigenome profiling technologies have become available such as ChIP-seq, DNase I hypersensitive site sequencing (DNase-seq), ATAC-seq and so on. The advent of single-cell sequencing has revolutionized the next-generation sequencing, applications in single-cell epigenetics are enriched rapidly. Epigenome sequencing technologies have evolved from low-throughput to high-throughput and from bulk sample to the single-cell scope, which unprecedentedly benefits scientists to interpret life from different angles. In this review, after briefly introducing the background knowledge of epigenome biology, we discuss the development of epigenome sequencing technologies, especially ChIP-seq & ATAC-seq and their current applications in scientific research. Finally, we provide insights into future applications and challenges.

17.
Nanoscale ; 11(12): 5325-5329, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30843552

RESUMO

Nanotubes are often formed by the folding of one-layer or multilayer compounds under microscopic catalytic growth conditions. Here, CdS nanotubes with tunable wall sizes and optical microcavities were prepared via a simple thermal evaporation co-deposition technique with Sn metal nanowire templating and ejection. Compared to core-shell Sn/CdS nanowires, which have poor microcavity quality, the hollow/CdS nanotubes have a higher quality factor (Q) that can reach approximately 400 in the spectral range of 550-800 nm when excited by a continuous-wave 405 nm laser. This high Q factor leads to low-threshold lasing and line-width narrowing due to the mode selection, which are important in many fields, including lasers, sensors, communications, and optical storage. A theoretical mode analysis of the hollow/CdS nanotubes with different thicknesses addressed their microcavity mode confinement and enhancements. This technique provides a new way to prepare semiconductor nanotubes for new photonic devices and photoelectric applications.

18.
Opt Express ; 26(17): 22273-22283, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30130922

RESUMO

We propose a scheme to generate optical vortices through exciting exciton polariton vortices by a Gaussian beam in a pillar microcavity. With coupled Gross-Piteavskii equations we find that the structure of the exciton polariton vortices and antivortices shows a strong dependence on the microcavity radius, pump geometry, and nonlinear exciton-exciton interaction. Due to the nonlinear exciton-exciton interaction the strong Gaussian beam cannot excite more exciton polariton vortices or antivortices with respect to the weak one. The calculation demonstrates that the weak Gaussian beam can excite vortex-antivortex pairs, vortices with high total orbital angular momentum, and superposition states of vortex and antivortex with high total opposite orbital angular momentum. The pump geometry for the Gaussian beam to excite these vortex structures is analyzed in detail, which shows a potential application for generating optical vortex beams.

19.
Haematologica ; 103(6): 1054-1064, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29472361

RESUMO

Hematopoietic stem cell transplantation following myeloablative chemotherapy is a curative treatment for many hematopoietic malignancies. However, profound granulocytopenia during the interval between transplantation and marrow recovery exposes recipients to risks of fatal infection, a significant source of transplant-associated morbidity and mortality. We have previously described the discovery of a small molecule, SW033291, that potently inhibits the prostaglandin degrading enzyme 15-PGDH, increases bone marrow prostaglandin E2, and accelerates hematopoietic recovery following murine transplant. Here we describe the efficacy of (+)-SW209415, a second-generation 15-PGDH inhibitor, in an expanded range of models relevant to human transplantation. (+)-SW209415 is 10,000-fold more soluble, providing the potential for intravenous delivery, while maintaining potency in inhibiting 15-PGDH, increasing in vivo prostaglandin E2, and accelerating hematopoietic regeneration following transplantation. In additional models, (+)-SW209415: (i) demonstrated synergy with granulocyte colony-stimulating factor, the current standard of care; (ii) maintained efficacy as transplant cell dose was escalated; (iii) maintained efficacy when transplant donors and recipients were aged; and (iv) potentiated homing in xenotransplants using human hematopoietic stem cells. (+)-SW209415 showed no adverse effects, no potentiation of in vivo growth of human myeloma and leukemia xenografts, and, on chronic high-dose administration, no toxicity as assessed by weight, blood counts and serum chemistry. These studies provide independent chemical confirmation of the activity of 15-PGDH inhibitors in potentiating hematopoietic recovery, extend the range of models in which inhibiting 15-PGDH demonstrates activity, allay concerns regarding potential for adverse effects from increasing prostaglandin E2, and thereby, advance 15-PGDH as a therapeutic target for potentiating hematopoietic stem cell transplantation.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Sobrevivência de Enxerto/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos/farmacologia , Hidroxiprostaglandina Desidrogenases/antagonistas & inibidores , Adulto , Fatores Etários , Animais , Transplante de Medula Óssea , Feminino , Transplante de Células-Tronco Hematopoéticas , Xenoenxertos , Humanos , Masculino , Camundongos
20.
Nano Lett ; 17(11): 6747-6751, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29039674

RESUMO

Using time-dependent density functional theory, we study the optical excitations in finite length carbon nanotubes. Evidence of spin-charge separation is given in the spacetime domain. We demonstrate that the charge density wave is due to collective excitations of electron singlets, while the accompanying spin density wave is due to those of electron triplets. The Tomonaga-Luttinger liquid parameter and density-density interaction are extrapolated from the first-principles excitation energies. We show that the density-density interaction increases with the length of the nanotube. The singlet and triplet excitation energies, on the other hand, decrease for increasing length of the nanotube. Their ratio is used to establish a first-principles approach for deriving the Tomonaga-Luttinger parameter (in excellent agreement with experimental data). Time evolution analysis of the charge and spin line densities evidences that the charge and spin density waves are elementary excitations of metallic carbon nanotubes. Their dynamics show no dependence on each other.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA