Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.125
Filtrar
1.
Adv Mater ; : e2313570, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38693828

RESUMO

Ternary copper (Cu) halides are promising candidates for replacing toxic lead halides in the field of perovskite light-emitting diodes (LEDs) toward practical applications. However, the electroluminescent performance of Cu halide-based LEDs remains a great challenge due to the presence of serious nonradiative recombination and inefficient charge transport in Cu halide emitters. Here, the rational design of host-guest [dppb]2Cu2I2 (dppb denotes 1,2-bis[diphenylphosphino]benzene) emitters and its utility in fabricating efficient Cu halide-based green LEDs that show a high external quantum efficiency (EQE) of 13.39% are reported. The host-guest [dppb]2Cu2I2 emitters with mCP (1,3-bis(N-carbazolyl)benzene) host demonstrate a significant improvement of carrier radiative recombination efficiency, with the photoluminescence quantum yield increased by nearly ten times, which is rooted in the efficient energy transfer and type-I energy level alignment between [dppb]2Cu2I2 and mCP. Moreover, the charge-transporting mCP host can raise the carrier mobility of [dppb]2Cu2I2 films, thereby enhancing the charge transport and recombination. More importantly, this strategy enables a large-area prototype LED with a record-breaking area up to 81 cm2, along with a decent EQE of 10.02% and uniform luminance. It is believed these results represent an encouraging stepping stone to bring Cu halide-based LEDs from the laboratory toward commercial lighting and display panels.

2.
Cell Death Discov ; 10(1): 223, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719811

RESUMO

Mechanical overloading can promote cartilage senescence and osteoarthritis (OA) development, but its impact on synovial macrophages and the interaction between macrophages and chondrocytes remain unknown. Here, we found that macrophages exhibited M1 polarization under mechanical overloading and secreted ectosomes that induced cartilage degradation and senescence. By performing miRNA sequencing on ectosomes, we identified highly expressed miR-350-3p as a key factor mediating the homeostatic imbalance of chondrocytes caused by M1-polarized macrophages, this result being confirmed by altering the miR-350-3p level in chondrocytes with mimics and inhibitor. In experimental OA mice, miR-350-3p was increased in synovium and cartilage, while intra-articular injection of antagomir-350-3p inhibited the increase of miR-350-3p and alleviated cartilage degeneration and senescence. Further studies showed that macrophage-derived ectosomal miR-350-3p promoted OA progression by inhibiting nuclear receptor binding SET domain protein 1(NSD1) in chondrocytes and regulating histone H3 lysine 36(H3K36) methylation. This study demonstrated that the targeting of macrophage-derived ectosomal miRNAs was a potential therapeutic method for mechanical overload-induced OA.

3.
Chem Sci ; 15(18): 6608-6621, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38725513

RESUMO

Over the years, electrochemical reactors have evolved significantly, with modern reactors now able to achieve a high current density and power output in compact sizes. This leap in performance has not only greatly accelerated the rate of electrochemical reactions but also had a broader impact on the environment. Traditional research perspectives, focused primarily on the internal working systems of reactors, possibly overlook the potential of electrochemical systems in regulating their surrounding environment. A novel research perspective considering the interaction between electrochemical processes and their environmental context as a unified subject of study has gradually emerged alongside the dramatic development of electrochemical techniques. This viewpoint introduces a paradigm shift: electrochemical reactors are not isolated entities but rather are integral parts that interact with their surroundings. Correspondingly, this calls for an innovative research methodology that goes beyond studying the electrochemical processes in isolation. Rather, it integrates the design of the electrochemical system with its specific application environment, ensuring seamless integration for optimal performance under various practical conditions. Therefore, performance metrics should include not only the basic parameters of the electrochemical reactions but also the adaptability of the electrochemical system in real-world scenarios beyond the laboratory. By focusing on environmental integration and application-driven design, the applications of electrochemical technology can be more effectively leveraged. This perspective is exemplified by an electrochemical system based on coupled cathodic oxygen reduction and anodic oxygen evolution reactions. By adopting this new research paradigm, the applications of this electrochemical system can be extended to fields like medical treatment, food science, and microbial fermentation, with an emphasis on tailored designs for these specific application fields. This comprehensive and systematic new research approach aims to fully explore the potential applications of electrochemical technology and foster interdisciplinary collaboration in the electrochemical field.

4.
J Chem Theory Comput ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727197

RESUMO

We propose an X-ray Raman pump-X-ray diffraction probe scheme to follow solvation dynamics upon charge migration in a solute molecule. The X-ray Raman pump selectively prepares a valence electronic wavepacket in the solute, while the probe provides information about the entire molecular ensemble. A combination of molecular dynamics and ab initio quantum chemistry simulations is applied to a Zn-Ni porphyrin dimer in water. Using time-resolved X-ray diffraction and pair distribution functions, we extracted solvation shell dynamics.

5.
Bioresour Technol ; 402: 130809, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38723729

RESUMO

Phosphorus is enriched in waste activated sludge (WAS) during wastewater treatment, and organic phosphorus (OP) is a potential slow-release P fertilizer. The chemical coagulants used in sludge dewatering leave numerous residues in WAS that affect sludge composting. In this study, the effects of polyaluminum chloride (PAC) and polyferric sulfate (PFS) on the bioconversion of dissolved OP (DOP) during sludge composting were investigated. The results revealed that PFS conditioning promoted the transformation and bioavailability of DOP, whereas PAC conditioning inhibited. Results indicated that PFS conditioning enhanced the transformation of OP molecules in the thermophilic phase. Through oxidation and dehydrogenation reactions, 1-hydroxy-pentane-3,4-diol-5-phosphate and D-ribofuranose 5-phosphate with high bioactivity were generated in the PFS-conditioned compost. Enzymatic hydrolysis experiments further verified that PFS conditioning enhanced the DOP bioavailability in the compost, whereas PAC conditioning inhibited it. The study has provided molecular insights into the effects of chemical conditioning on DOP conversion during sludge composting.

6.
Sci Rep ; 14(1): 10647, 2024 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724510

RESUMO

This study aimed to evaluate the safety of Moringa by comparing the effects of different gavage doses of Moringa. The general behavior, body weight, food intake, blood indexes, serum biochemical indexes, and histopathology of rats were used to determine the safety threshold and to provide a reference for the further development and use of Moringa as animal feed. 40 Sprague Dawley rats were selected and given transoral gavage for 28 consecutive days. The T1, T2 and T3 groups were observed for general behavior, body weight, and food intake. Blood and serum biochemical indices were quantified, and histopathology was performed to evaluate the effect and safety of Moringa. The results of the toxicological test showed that (1) Only T1 groups experienced diarrhea. (2) The body weight and food intake of rats in each group were normal compared with the control group. (3) The hematological and serum biochemical indices of rats in the T1 group were significantly different from those of CK but were in the normal range; (4) The results of microscopic examination of the heart, liver, spleen, lung, and kidney of rats in each group were normal, but inflammation occurred in stomach and jejunum of rats in the T1 group, but not in the ileum. The gastrointestinal tract of rats in the T2 and T3 groups were normal. (5) No abnormal death occurred in any of the treatment groups.The results of this study revealed that gavage of Moringa homogenate at a dose of 6 g/kg BW can cause diarrhea in rats. Although there is no pathological effect on weight, food intake, blood and serum biochemical indicators in rats, there are pathological textures in the gastrointestinal tissue caused by diarrhea. Therefore, the safety threshold of Moringa homogenate should be ≤ 3 g/kg BW.


Assuntos
Peso Corporal , Moringa oleifera , Ratos Sprague-Dawley , Animais , Moringa oleifera/química , Ratos , Masculino , Peso Corporal/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Feminino , Ração Animal/análise , Diarreia/induzido quimicamente , Diarreia/veterinária
7.
J Nanobiotechnology ; 22(1): 233, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725011

RESUMO

BACKGROUND: Dry Eye Disease (DED) is a prevalent multifactorial ocular disease characterized by a vicious cycle of inflammation, oxidative stress, and mitochondrial dysfunction on the ocular surface, all of which lead to DED deterioration and impair the patients' quality of life and social functioning. Currently, anti-inflammatory drugs have shown promising efficacy in treating DED; however, such drugs are associated with side effects. The bioavailability of ocular drugs is less than 5% owing to factors such as rapid tear turnover and the presence of the corneal barrier. This calls for investigations to overcome these challenges associated with ocular drug administration. RESULTS: A novel hierarchical action liposome nanosystem (PHP-DPS@INS) was developed in this study. In terms of delivery, PHP-DPS@INS nanoparticles (NPs) overcame the ocular surface transport barrier by adopting the strategy of "ocular surface electrostatic adhesion-lysosomal site-directed escape". In terms of therapy, PHP-DPS@INS achieved mitochondrial targeting and antioxidant effects through SS-31 peptide, and exerted an anti-inflammatory effect by loading insulin to reduce mitochondrial inflammatory metabolites. Ultimately, the synergistic action of "anti-inflammation-antioxidation-mitochondrial function restoration" breaks the vicious cycle associated with DED. The PHP-DPS@INS demonstrated remarkable cellular uptake, lysosomal escape, and mitochondrial targeting in vitro. Targeted metabolomics analysis revealed that PHP-DPS@INS effectively normalized the elevated level of mitochondrial proinflammatory metabolite fumarate in an in vitro hypertonic model of DED, thereby reducing the levels of key inflammatory factors (IL-1ß, IL-6, and TNF-α). Additionally, PHP-DPS@INS strongly inhibited reactive oxygen species (ROS) production and facilitated mitochondrial structural repair. In vivo, the PHP-DPS@INS treatment significantly enhanced the adhesion duration and corneal permeability of the ocular surface in DED mice, thereby improving insulin bioavailability. It also restored tear secretion, suppressed ocular surface damage, and reduced inflammation in DED mice. Moreover, it demonstrated favorable safety profiles both in vitro and in vivo. CONCLUSION: In summary, this study successfully developed a comprehensive DED management nanosystem that overcame the ocular surface transmission barrier and disrupted the vicious cycle that lead to dry eye pathogenesis. Additionally, it pioneered the regulation of mitochondrial metabolites as an anti-inflammatory treatment for ocular conditions, presenting a safe, efficient, and innovative therapeutic strategy for DED and other inflammatory diseases.


Assuntos
Síndromes do Olho Seco , Inflamação , Lipossomos , Mitocôndrias , Estresse Oxidativo , Síndromes do Olho Seco/tratamento farmacológico , Animais , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Lipossomos/química , Inflamação/tratamento farmacológico , Humanos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/química , Nanopartículas/química , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Córnea/metabolismo , Córnea/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Oligopeptídeos
9.
J Transl Med ; 22(1): 436, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720350

RESUMO

BACKGROUND: Subarachnoid hemorrhage (SAH) represents a form of cerebrovascular event characterized by a notable mortality and morbidity rate. Fibroblast growth factor 21 (FGF21), a versatile hormone predominantly synthesized by the hepatic tissue, has emerged as a promising neuroprotective agent. Nevertheless, the precise impacts and underlying mechanisms of FGF21 in the context of SAH remain enigmatic. METHODS: To elucidate the role of FGF21 in inhibiting the microglial cGAS-STING pathway and providing protection against SAH-induced cerebral injury, a series of cellular and molecular techniques, including western blot analysis, real-time polymerase chain reaction, immunohistochemistry, RNA sequencing, and behavioral assays, were employed. RESULTS: Administration of recombinant fibroblast growth factor 21 (rFGF21) effectively mitigated neural apoptosis, improved cerebral edema, and attenuated neurological impairments post-SAH. Transcriptomic analysis revealed that SAH triggered the upregulation of numerous genes linked to innate immunity, particularly those involved in the type I interferon (IFN-I) pathway and microglial function, which were notably suppressed upon adjunctive rFGF21 treatment. Mechanistically, rFGF21 intervention facilitated mitophagy in an AMP-activated protein kinase (AMPK)-dependent manner, thereby preventing mitochondrial DNA (mtDNA) release into the cytoplasm and dampening the activation of the DNA-sensing cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway. Conditional knockout of STING in microglia markedly ameliorated the inflammatory response and mitigated secondary brain injuries post-SAH. CONCLUSION: Our results present the initial evidence that FGF21 confers a protective effect against neuroinflammation-associated brain damage subsequent to SAH. Mechanistically, we have elucidated a novel pathway by which FGF21 exerts this neuroprotection through inhibition of the cGAS-STING signaling cascade.


Assuntos
Fatores de Crescimento de Fibroblastos , Proteínas de Membrana , Camundongos Endogâmicos C57BL , Mitofagia , Doenças Neuroinflamatórias , Nucleotidiltransferases , Transdução de Sinais , Hemorragia Subaracnóidea , Animais , Proteínas de Membrana/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/metabolismo , Hemorragia Subaracnóidea/patologia , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/etiologia , Mitofagia/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Nucleotidiltransferases/metabolismo , Masculino , Camundongos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Microglia/metabolismo , Microglia/patologia , Microglia/efeitos dos fármacos , Apoptose/efeitos dos fármacos
10.
J Zhejiang Univ Sci B ; 25(5): 438-450, 2024 May 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38725342

RESUMO

Gastric cancer (GC) is one of the most common gastrointestinal tumors. As a newly discovered type of non-coding RNAs, transfer RNA (tRNA)|-derived small RNAs (tsRNAs) play a dual biological role in cancer. Our previous studies have demonstrated the potential of tRF-23-Q99P9P9NDD as a diagnostic and prognostic biomarker for GC. In this work, we confirmed for the first time that tRF-23-Q99P9P9NDD can promote the proliferation, migration, and invasion of GC cells in vitro. The dual luciferase reporter gene assay confirmed that tRF-23-Q99P9P9NDD could bind to the 3' untranslated region (UTR) site of acyl-coenzyme A dehydrogenase short/branched chain (ACADSB). In addition, ACADSB could rescue the effect of tRF-23-Q99P9P9NDD on GC cells. Next, we used Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) to find that downregulated ACADSB in GC may promote lipid accumulation by inhibiting fatty acid catabolism and ferroptosis. Finally, we verified the correlation between ACADSB and 12 ferroptosis genes at the transcriptional level, as well as the changes in reactive oxygen species (ROS) levels by flow cytometry. In summary, this study proposes that tRF-23-Q99P9P9NDD may affect GC lipid metabolism and ferroptosis by targeting ACADSB, thereby promoting GC progression. It provides a theoretical basis for the diagnostic and prognostic monitoring value of GC and opens up new possibilities for treatment.


Assuntos
Movimento Celular , Proliferação de Células , Neoplasias Gástricas , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Humanos , Linhagem Celular Tumoral , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , RNA de Transferência/genética , RNA de Transferência/metabolismo , Ferroptose/genética , Regiões 3' não Traduzidas
11.
BMC Infect Dis ; 24(1): 479, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730338

RESUMO

BACKGROUND & AIMS: Pyogenic liver abscess (PLA) is a common hepatobiliary infection that has been shown to have an increasing incidence, with biliary surgery being identified as a trigger. Our aim was to investigate the clinical characteristics and treatments of PLA patients with and without a history of biliary surgery (BS). METHODS: The study included a total of 353 patients with PLA who received treatment at our hospital between January 2014 and February 2023. These patients were categorized into two groups: the BS group (n = 91) and the non-BS group (n = 262). In the BS group, according to the anastomosis method, they were further divided into bilioenteric anastomoses group (BEA, n = 22) and non-bilioenteric anastomoses group (non-BEA, n = 69). Clinical characteristics were recorded and analyzed. RESULTS: The percentage of PLA patients with BS history was 25.78%. The BS group exhibited elevated levels of TBIL and activated APTT abnormalities (P = 0.009 and P = 0.041, respectively). Within the BS group, the BEA subgroup had a higher prevalence of diabetes mellitus (P < 0.001) and solitary abscesses (P = 0.008) compared to the non-BEA subgroup. Escherichia coli was more frequently detected in the BS group, as evidenced by positive pus cultures (P = 0.021). The BS group exhibited reduced treatment efficacy compared to those non-BS history (P = 0.020). Intriguingly, the BS group received a higher proportion of conservative treatment (45.05% vs. 21.76%), along with reduced utilization of surgical drainage (6.59% vs. 16.41%). CONCLUSIONS: Patients with BS history, especially those who have undergone BEA, have an increased susceptibility to PLA formation without affecting prognosis.


Assuntos
Procedimentos Cirúrgicos do Sistema Biliar , Abscesso Hepático Piogênico , Humanos , Abscesso Hepático Piogênico/microbiologia , Abscesso Hepático Piogênico/cirurgia , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Idoso , Adulto , Antibacterianos/uso terapêutico , Escherichia coli/isolamento & purificação , Drenagem
12.
Food Res Int ; 186: 114321, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729691

RESUMO

Biogenic nanoparticles are promising carriers to deliver essential minerals. Here, calcium-enriched polyphosphate nanoparticles (CaPNPs) with a Ca/P molar ratio > 0.5 were produced by Synechococcus sp. PCC 7002 in the growth medium containing 1.08 g/L CaCl2, and had nearly spherical morphologies with a wide size distribution of 5-75 nm and strongly anionic surface properties with an average ζ-potential of -39 mV, according to dynamic light-scattering analysis, transmission and scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The ex-vivo ligated mouse ileal loop assays found that calcium in CaPNPs was readily available to intestinal absorption via both ion channel-mediated and endocytic pathways, specifically invoking macropinocytic internalization, lysosomal degradation, and transcytosis. Rat oral pharmacokinetics revealed that CaPNPs had a calcium bioavailability approximately 100 % relative to that of CaCl2 and more than 1.6 times of that of CaCO3. CaPNPs corrected the retinoic acid-induced increase in serum calcium, phosphorus, and bone-specific alkaline phosphatase, and decrease in serum osteocalcin, bone mineral content/density, and femoral geometric parameters with an efficacy equivalent to CaCl2 and markedly greater than CaCO3. In contrast to CaCl2, CaPNPs possessed desirable resistance against phytate's antagonistic action on calcium absorption in these ex vivo and in vivo studies. Overall, CaPNPs are attractive as a candidate agent for calcium supplementation, especially to populations on high-phytate diets.


Assuntos
Disponibilidade Biológica , Cálcio , Microalgas , Nanopartículas , Ácido Fítico , Polifosfatos , Animais , Polifosfatos/química , Camundongos , Ácido Fítico/química , Cálcio/metabolismo , Masculino , Ratos , Absorção Intestinal/efeitos dos fármacos , Ratos Sprague-Dawley
13.
Cancer Lett ; 592: 216923, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38697462

RESUMO

Liver metastasis is common in patients with gallbladder cancer (GBC), imposing a significant challenge in clinical management and serving as a poor prognostic indicator. However, the mechanisms underlying liver metastasis remain largely unknown. Here, we report a crucial role of tyrosine aminotransferase (TAT) in liver metastasis of GBC. TAT is frequently up-regulated in GBC tissues. Increased TAT expression is associated with frequent liver metastasis and poor prognosis of GBC patients. Overexpression of TAT promotes GBC cell migration and invasion in vitro, as well as liver metastasis in vivo. TAT knockdown has the opposite effects. Intriguingly, TAT promotes liver metastasis of GBC by potentiating cardiolipin-dependent mitophagy. Mechanistically, TAT directly binds to cardiolipin and leads to cardiolipin externalization and subsequent mitophagy. Moreover, TRIM21 (Tripartite Motif Containing 21), an E3 ubiquitin ligase, interacts with TAT. The histine residues 336 and 338 at TRIM21 are essential for this binding. TRIM21 preferentially adds the lysine 63 (K63)-linked ubiquitin chains on TAT principally at K136. TRIM21-mediated TAT ubiquitination impairs its dimerization and mitochondrial location, subsequently inhibiting tumor invasion and migration of GBC cells. Therefore, our study identifies TAT as a novel driver of GBC liver metastasis, emphasizing its potential as a therapeutic target.

14.
Neuroscience ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38705349

RESUMO

Parkinson's disease (PD) is a common and complex neurodegenerative disease. This disease is typically characterized by the formation of Lewy bodies in multiple brain regions and dopaminergic neuronal loss in the substantia nigra pars compacta, resulting in non-motor symptoms (e.g., olfactory deficits) and motor dysfunction in the late stages. There is yet no effective cure for Parkinson's disease. Considering the neuroprotective effects of exosomes, we investigated whether intranasal administration of umbilical cord mesenchymal stem cell exosomes could improve behavioral functions in PD mice. First, exosomes were endocytosed by the cells in vitro and in vivo, indicating that exosomes can cross the blood-brain barrier. Second, we found that both motor and non-motor functions of the PD models were effectively improved during intranasal exosomes treatment. Finally, the activity of olfactory bulb neurons was improved and the loss of dopaminergic neurons in the substantia nigra pars compacta was reversed. Moreover, exosomes attenuated microglia and astrocyte activation, leading to a low level of inflammation in the brain. In conclusion, our study provided a new reference for the clinical application of exosomes in the treatment of PD.

15.
Front Oncol ; 14: 1322044, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38741776

RESUMO

Background: Although screening is widely used to reduce cancer burden, untargeted cancers are frequently missed after single cancer screening. Joint cancer screening is presumed as a more effective strategy to reduce overall cancer burden. Methods: Gender-specific screening effects on PLCO cancer incidence, PLCO cancer mortality, all-neoplasms mortality and all-cause mortality were evaluated, and meta-analyses based on gender-specific screening effects were conducted to achieve the pooled effects. The cut-off value of time-dependent receiver-operating-characteristic curve of 10-year combined PLCO cancer risk was used to reclassify participants into low- and high-risk subgroups. Further analyses were conducted to investigate screening effects stratified by risk groups and screening compliance. Results: After a median follow-up of 10.48 years for incidence and 16.85 years for mortality, a total of 5,506 PLCO cancer cases, 1,845 PLCO cancer deaths, 3,970 all-neoplasms deaths, and 14,221 all-cause deaths were documented in the screening arm, while 6,261, 2,417, 5,091, and 18,516 outcome-specific events in the control arm. Joint cancer screening did not significantly reduce PLCO cancer incidence, but significantly reduced male-specific PLCO cancer mortality (hazard ratio and 95% confidence intervals [HR(95%CIs)]: 0.88(0.82, 0.95)) and pooled mortality [0.89(0.84, 0.95)]. More importantly, joint cancer screening significantly reduced both gender-specific all-neoplasm mortality [0.91(0.86, 0.96) for males, 0.91(0.85, 0.98) for females, and 0.91(0.87, 0.95) for meta-analyses] and all-cause mortality [0.90(0.88, 0.93) for male, 0.88(0.85, 0.92) for female, and 0.89(0.87, 0.91) for meta-analyses]. Further analyses showed decreased risks of all-neoplasm mortality was observed with good compliance [0.72(0.67, 0.77) for male and 0.72(0.65, 0.80) for female] and increased risks with poor compliance [1.61(1.40, 1.85) for male and 1.30(1.13, 1.40) for female]. Conclusion: Joint cancer screening could be recommended as a potentially strategy to reduce the overall cancer burden. More compliance, more benefits. However, organizing a joint cancer screening not only requires more ingenious design, but also needs more attentions to the potential harms. Trial registration: NCT00002540 (Prostate), NCT01696968 (Lung), NCT01696981 (Colorectal), NCT01696994 (Ovarian).

16.
Front Psychiatry ; 15: 1349989, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38742128

RESUMO

Objective: Although extensive structural and functional abnormalities have been reported in schizophrenia, the gray matter volume (GMV) covariance of the amygdala remain unknown. The amygdala contains several subregions with different connection patterns and functions, but it is unclear whether the GMV covariance of these subregions are selectively affected in schizophrenia. Methods: To address this issue, we compared the GMV covariance of each amygdala subregion between 807 schizophrenia patients and 845 healthy controls from 11 centers. The amygdala was segmented into nine subregions using FreeSurfer (v7.1.1), including the lateral (La), basal (Ba), accessory-basal (AB), anterior-amygdaloid-area (AAA), central (Ce), medial (Me), cortical (Co), corticoamygdaloid-transition (CAT), and paralaminar (PL) nucleus. We developed an operational combat harmonization model for 11 centers, subsequently employing a voxel-wise general linear model to investigate the differences in GMV covariance between schizophrenia patients and healthy controls across these subregions and the entire brain, while adjusting for age, sex and TIV. Results: Our findings revealed that five amygdala subregions of schizophrenia patients, including bilateral AAA, CAT, and right Ba, demonstrated significantly increased GMV covariance with the hippocampus, striatum, orbitofrontal cortex, and so on (permutation test, P< 0.05, corrected). These findings could be replicated in most centers. Rigorous correlation analysis failed to identify relationships between the altered GMV covariance with positive and negative symptom scale, duration of illness, and antipsychotic medication measure. Conclusion: Our research is the first to discover selectively impaired GMV covariance patterns of amygdala subregion in a large multicenter sample size of patients with schizophrenia.

17.
Cell ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38733990

RESUMO

Many behaviors require the coordinated actions of somatic and autonomic functions. However, the underlying mechanisms remain elusive. By opto-stimulating different populations of descending spinal projecting neurons (SPNs) in anesthetized mice, we show that stimulation of excitatory SPNs in the rostral ventromedial medulla (rVMM) resulted in a simultaneous increase in somatomotor and sympathetic activities. Conversely, opto-stimulation of rVMM inhibitory SPNs decreased both activities. Anatomically, these SPNs innervate both sympathetic preganglionic neurons and motor-related regions in the spinal cord. Fiber-photometry recording indicated that the activities of rVMM SPNs correlate with different levels of muscle and sympathetic tone during distinct arousal states. Inhibiting rVMM excitatory SPNs reduced basal muscle and sympathetic tone, impairing locomotion initiation and high-speed performance. In contrast, silencing the inhibitory population abolished muscle atonia and sympathetic hypoactivity during rapid eye movement (REM) sleep. Together, these results identify rVMM SPNs as descending spinal projecting pathways controlling the tone of both the somatomotor and sympathetic systems.

18.
Biochim Biophys Acta Rev Cancer ; : 189107, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38734035

RESUMO

The functions of mitochondria, including energy production and biomolecule synthesis, have been known for a long time. Given the rising incidence of cancer, the role of mitochondria in cancer has become increasingly popular. Activated by components released by mitochondria, various pathways interact with each other to induce immune responses to protect organisms from attack. However, mitochondria play dual roles in the progression of cancer. Abnormalities in proteins, which are the elementary structures of mitochondria, are closely linked with oncogenesis. Both the aberrant accumulation of intermediates and mutations in enzymes result in the generation and progression of cancer. Therefore, targeting mitochondria to treat cancer may be a new strategy. Several drugs aimed at inhibiting mutated enzymes and accumulated intermediates have been tested clinically. Here, we discuss the current understanding of mitochondria in cancer and the interactions between mitochondrial functions, immune responses, and oncogenesis. Furthermore, we discuss mitochondria as hopeful targets for cancer therapy, providing insights into the progression of future therapeutic strategies.

19.
Chin Herb Med ; 16(2): 227-230, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38706817

RESUMO

Objective: To study the compounds isolated from Penicillium HDS-Z-1E, an endophytic fungal strain isolated from Taxus cuspidata and their activation effect of catalase (CAT). Methods: The chemical constituents were isolated from Penicillium HDS-Z-1E, by using silica gel, Sephadex LH-20 and HPLC. The structural elucidations of five metabolites were elucidated on the basis of spectroscopic including 1H-NMR, 13C-NMR, HMBC and HSQC. Their activation sites of catalase have been investigated by molecular docking. Results: Five metabolites, compounds (1-5) were isolated from Penicillium HDS-Z-1E and identified as 4-hydroxy-4-methyltetrahydro-2H-pyran-2-one (1), 4-hydroxymethyl-5, 6-dihydro-pyran-2-one (2), 5, 6-dihydro-2-oxo-2H-pyran-4-carboxylic (3), N-acetyl-hydrazinobenzoic acid (4), and methyl 2-(2, 5-dihydroxyphenyl) acetate (5). Conclusion: Compound 3 is a new compound. Compounds 3 and 4 may have potential activators of catalase, providing a theoretical basis for the development of CAT activators.

20.
Food Chem ; 452: 139501, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38728887

RESUMO

To clarify the change mechanism of biological activity and physicochemical characteristics in Lacticaseibacillus paracasei JY025 fortified milk powder (LFMP) during storage, morphological observation, JY025 survival, storage stability, and metabolomics of LFMP were determined during the storage period in this study. The results showed that the LFMP had a higher survival rate of JY025 compared with the bacterial powder of JY025 (LBP) during storage, which suggested that milk powder matrix could reduce strain JY025 mortality under prolonged storage in the LFMP samples. The fortification of strain JY025 also affected the stability of milk powder during the storage period. There was lower water activity and higher glass transition temperature in LFMP samples compared with blank control milk powder (BCMP) during storage. Moreover, the metabolomics results of LFMP indicated that vitamin degradation, Maillard reaction, lipid oxidation, tricarboxylic acid cycle, and lactobacilli metabolism are interrelated and influence each other to create complicated metabolism networks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA