Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8743, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627506

RESUMO

The IVa subfamily of glycine-rich proteins (GRPs) comprises a group of glycine-rich RNA binding proteins referred to as GR-RBPa here. Previous studies have demonstrated functions of GR-RBPa proteins in regulating stress response in plants. However, the mechanisms responsible for the differential regulatory functions of GR-RBPa proteins in different plant species have not been fully elucidated. In this study, we identified and comprehensively studied a total of 34 GR-RBPa proteins from five plant species. Our analysis revealed that GR-RBPa proteins were further classified into two branches, with proteins in branch I being relatively more conserved than those in branch II. When subjected to identical stresses, these genes exhibited intensive and differential expression regulation in different plant species, corresponding to the enrichment of cis-acting regulatory elements involving in environmental and internal signaling in these genes. Unexpectedly, all GR-RBPa genes in branch I underwent intensive alternative splicing (AS) regulation, while almost all genes in branch II were only constitutively spliced, despite having more introns. This study highlights the complex and divergent regulations of a group of conserved RNA binding proteins in different plants when exposed to identical stress conditions. These species-specific regulations may have implications for stress responses and adaptations in different plant species.


Assuntos
Plantas , Sequências Reguladoras de Ácido Nucleico , Plantas/genética , Plantas/metabolismo , Estresse Fisiológico/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Glicina/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia
2.
J Hazard Mater ; 465: 133279, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38141304

RESUMO

In recent years, plastic pollution has become a global environmental problem, posing a potential threat to agricultural ecosystems and human health, and may further exacerbate global food security problems. Studies have revealed that exposure to micro/nano-plastics (MPs/NPs) might cause various aspects of physiological toxicities, including plant biomass reduction, intracellular oxidative stress burst, photosynthesis inhibition, water and nutrient absorption reduction, cellular and genotoxicity, seed germination retardation, and that the effects were closely related to MP/NP properties (type, particle size, functional groups), exposure concentration, exposure duration and plant characteristics (species, tissue, growth stage). Based on a brief review of the physiological toxicity of MPs/NPs to plant growth, this paper comprehensively reviews the potential molecular mechanism of MPs/NPs on plant growth from perspectives of multi-omics, including transcriptome, metabolome, proteome and microbiome, thus to reveal the role of MPs/NPs in plant transcriptional regulation, metabolic pathway reprogramming, protein translational and post-translational modification, as well as rhizosphere microbial remodeling at multiple levels. Meanwhile, this paper also provides prospects for future research, and clarifies the future research directions and the technologies adopted.


Assuntos
Ecossistema , Microbiota , Humanos , Microplásticos , Multiômica , Agricultura , Biomassa , Plásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA