Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Cell Probes ; 48: 101451, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31541671

RESUMO

Brucella, the etiological agent of brucellosis, is an important zoonosis pathogen worldwide. Brucella infects humans and various domestic and wild animals, and represents a great threat to public health and animal husbandry. In the present study, we developed a real-time recombinase polymerase amplification (RPA) assay for the detection of Brucella. The assay targeted the bcsp31 gene of Brucella, and an RPA exo probe and a pair of primers were selected for assay validation. RPA sensitivity and specificity were evaluated using plasmid standards, Brucella representative strains, and non-Brucella strains. The RPA assay achieved a detection limit of 17 molecules in 95% of cases based on probit analysis, and could successfully distinguish 18 representative Brucella strains (B. abortus biovars 1, 2, 3, 4, 5, 6, 7 and 9, B. melitensis biovars 1, 2 and 3, B. suis biovars 1, 2, 3 and 4, B. canis, B. neotomae and B. ovis), and four Brucella vaccine strains (A19, S19, S2 and M5). A total of 52 Brucella field strains were detected by real-time PCR and RPA in parallel, and compared with real-time PCR, the sensitivity of the RPA assay was 94% (49/52). Thus, this RPA assay may be a rapid, sensitive, and specific tool for the prevention and control of Brucellosis.


Assuntos
Brucella/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Recombinases/genética , Proteínas de Bactérias/genética , Primers do DNA/genética , DNA Bacteriano/genética , Sensibilidade e Especificidade
2.
BMC Vet Res ; 14(1): 27, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29361960

RESUMO

BACKGROUND: Brucellosis is a widespread zoonotic disease caused by Gram-negative Brucella bacteria. Immunisation with attenuated vaccine is an effective method of prevention, but it can interfere with diagnosis. Live, attenuated Brucella abortus strain 104M has been used for the prevention of human brucellosis in China since 1965. However, at present, no fast and reliable method exists that can distinguish this strain from field strains. Single nucleotide polymorphism (SNP)-based assays offer a new approach for such discrimination. SNP-based minor groove binder (MGB) and Cycleave assays have been used for rapid identification of four Brucella vaccine strains (B. abortus strains S19, A19 and RB51, and B. melitensis Rev1). The main objective of this study was to develop a PCR assay for rapid and specific detection of strain 104M. RESULTS: We developed a SNP-based MGB PCR assay that could successfully distinguish strain 104M from 18 representative strains of Brucella (B. abortus biovars 1, 2, 3, 4, 5, 6, 7 and 9, B. melitensis biovars 1, 2 and 3, B. suis biovars 1, 2, 3 and 4, B. canis, B. neotomae, and B. ovis), four Brucella vaccine strains (A19, S19, S2, M5), and 55 Brucella clinical field strains. The assay gave a negative reaction with four non-Brucella species (Escherichia coli, Pasteurella multocida, Streptococcus suis and Pseudomonas aeruginosa). The minimum sensitivity of the assay, evaluated using 10-fold dilutions of chromosomal DNA, was 220 fg for the 104M strain and 76 fg for the single non-104M Brucella strain tested (B. abortus A19). The assay was also reproducible (intra- and inter-assay coefficients of variation = 0.006-0.022 and 0.012-0.044, respectively). CONCLUSIONS: A SNP-based MGB PCR assay was developed that could straightforwardly and unambiguously distinguish B. abortus vaccine strain 104M from non-104M Brucella strains. Compared to the classical isolation and identification approaches of bacteriology, this real-time PCR assay has substantial advantages in terms of simplicity and speed, and also reduces potential exposure to live Brucella. The assay developed is therefore a simple, rapid, sensitive, and specific tool for brucellosis diagnosis and control.


Assuntos
Vacina contra Brucelose/genética , Brucella abortus/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Animais , Brucella abortus/genética , Brucella abortus/imunologia , Brucelose/imunologia , DNA Bacteriano , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
3.
Sci Rep ; 6: 32861, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27597387

RESUMO

The extreme salinity and high internal resistance of saline-alkali soil contaminated by petroleum hydrocarbons were two key limitations for using the bioelectrochemical remediation. In order to solve two problems, we simply rinsed soil, added carbon fiber to polluted soil. The charge output was enhanced by 110% with increase of the maximum current densities from 81 to 304 mA·m(-2) while hydrocarbons degradation rate enhanced by 484%, especially the high molecular weight fractions (C28-C36 of n-alkanes and 4-6 rings of PAHs). These effects were possibly due to the selective enrichment of species belonged to δ-Proteobacteria (Proteobacteria), Flavobacteriia (Bacteroidetes) or Clostridia (Firmicutes), the activities of biological electron transfer and enzymes. As we know, oxygenase gene that directly decided the process of degradation, was surveyed for the first time in soil bioelectrochemical remediation system. The results confirmed that the bio-current stimulated the activities of naphthalene dioxygenase and xylene monooxygenase and thus the hydrocarbons degradation and the electricity generation. Given that electricity generation and the remediation performance are governed by multiple factors, understanding of microbial community and enzyme gene is crucial to promote the power yield and the bioelectrochemical remediation applicability.

4.
Sensors (Basel) ; 16(5)2016 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-27144567

RESUMO

The electrical conductivity (EC) of soil is generally measured after soil extraction, so this method cannot represent the in situ EC of soil (e.g., EC of soils with different moisture contents) and therefore lacks comparability in some cases. Using a resistance measurement apparatus converted from a configuration of soil microbial fuel cell, the in situ soil EC was evaluated according to the Ohmic resistance (Rs) measured using electrochemical impedance spectroscopy. The EC of soils with moisture content from 9.1% to 37.5% was calculated according to Rs. A significant positive correlation (R² = 0.896, p < 0.01) between the soil EC and the moisture content was observed, which demonstrated the feasibility of the approach. This new method can not only represent the actual soil EC, but also does not need any pretreatment. Thus it may be used widely in the measurement of the EC for soils and sediments.

5.
J Vet Diagn Invest ; 28(3): 214-8, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27075847

RESUMO

Brucellosis is a widespread zoonotic disease caused by Brucella spp. Immunization with attenuated vaccines has proved to be an effective method of prevention; however, it may also interfere with diagnosis. Brucella abortus strain A19, which is homologous to B. abortus strain S19, is widely used for the prevention of bovine brucellosis in China. For effective monitoring of the control of brucellosis, it is essential to distinguish A19 from field strains. Single-nucleotide polymorphism-based assays offer a new approach to such discrimination studies. In the current study, we developed a cycleave PCR assay that successfully distinguished attenuated vaccine strains A19 and S19 from 22 strains of B. abortus and 57 strains of 5 other Brucella species. The assay gave a negative reaction with 4 non-Brucella species. The minimum sensitivity of the assay, evaluated using 10-fold dilutions of chromosomal DNA, was 7.6 fg for the A19 strain and 220 fg for the single non-A19/non-S19 Brucella strain tested (B. abortus 104M). The assay was also reproducible (intra- and interassay coefficients of variation: 0.003-0.01 and 0.004-0.025, respectively). The cycleave assay gave an A19/S19-specific reaction in 3 out of 125 field serum samples, with the same 3 samples being positive in an alternative A19/S19-specific molecular assay. The cycleave assay gave a total of 102 Brucella-specific reactions (3 being the A19/S19-specific reactions), whereas an alternative Brucella-specific assay gave 92 positive reactions (all also positive in the cycleave assay). Therefore, this assay represents a simple, rapid, sensitive, and specific tool for use in brucellosis control.


Assuntos
Vacina contra Brucelose/administração & dosagem , Brucella abortus/isolamento & purificação , Brucelose/veterinária , Animais , Brucella abortus/genética , Brucella abortus/imunologia , Brucelose/sangue , Brucelose/microbiologia , Brucelose/prevenção & controle , Bovinos , China , Cabras , Reação em Cadeia da Polimerase/métodos , Reação em Cadeia da Polimerase/veterinária , Valor Preditivo dos Testes , Suínos , Vacinação/veterinária
6.
Chemosphere ; 141: 62-70, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26135976

RESUMO

Bioelectrochemical system is an emerging technology for the remediation of soils contaminated by petroleum hydrocarbons. However, performance of such systems can be limited by the inefficient mass transport in soil. Here we report a new method of sand amendment, which significantly increases both oxygen and proton transports, resulting to increased soil porosity (from 44.5% to 51.3%), decreased Ohmic resistance (by 46%), and increased charge output (from 2.5 to 3.5Cg(-1)soil). The degradation rates of petroleum hydrocarbons increased by up to 268% in 135d. The degradation of n-alkanes and polycyclic aromatic hydrocarbons with high molecular weight was accelerated, and denaturing gradient gel electrophoresis showed that the microbial community close to the air-cathode was substantially stimulated by the induced current, especially the hydrocarbon degrading bacteria Alcanivorax. The bioelectrochemical stimulation imposed a selective pressure on the microbial community of anodes, including that far from the cathode. These results suggested that sand amendment can be an effective approach for soil conditioning that will enhances the bioelectrochemical removal of hydrocarbons in contaminated soils.


Assuntos
Técnicas Eletroquímicas/métodos , Petróleo/análise , Dióxido de Silício/química , Microbiologia do Solo , Poluentes do Solo/análise , Solo/química , Alcanivoraceae/crescimento & desenvolvimento , Biodegradação Ambiental , Eletroforese em Gel de Gradiente Desnaturante , Eletrodos , Hidrocarbonetos Policíclicos Aromáticos/análise
7.
Environ Sci Pollut Res Int ; 22(3): 2335-41, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25189807

RESUMO

With the aim of in situ bioremediation of soil contaminated by hydrocarbons, anodes arranged with two different ways (horizontal or vertical) were compared in microbial fuel cells (MFCs). Charge outputs as high as 833 and 762C were achieved in reactors with anodes horizontally arranged (HA) and vertically arranged (VA). Up to 12.5 % of the total petroleum hydrocarbon (TPH) was removed in HA after 135 days, which was 50.6 % higher than that in VA (8.3 %) and 95.3 % higher than that in the disconnected control (6.4 %). Hydrocarbon fingerprint analysis showed that the degradation rates of both alkanes and polycyclic aromatic hydrocarbons (PAHs) in HA were higher than those in VA. Lower mass transport resistance in the HA than that of the VA seems to result in more power and more TPH degradation. Soil pH was increased from 8.26 to 9.12 in HA and from 8.26 to 8.64 in VA, whereas the conductivity was decreased from 1.99 to 1.54 mS/cm in HA and from 1.99 to 1.46 mS/cm in VA accompanied with the removal of TPH. Considering both enhanced biodegradation of hydrocarbon and generation of charge in HA, the MFC with anodes horizontally arranged is a promising configuration for future applications.


Assuntos
Alcanos/metabolismo , Fontes de Energia Bioelétrica , Poluição por Petróleo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Eletrodos , Poluição Ambiental , Hidrocarbonetos , Petróleo/metabolismo , Solo/química
8.
Environ Sci Technol ; 48(7): 4191-8, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24597673

RESUMO

Activated carbon (AC) is a promising catalyst for the air cathode of microbial fuel cells (MFCs) because of its high performance and low cost. To increase the performance of AC air cathodes, the acceleration of OH(-) transport is one of the most important methods, but it has not been widely investigated. Here we added quaternary ammonium to ACs by in situ anchoring of a quaternary ammonium/epoxide-reacting compound (QAE) or ex situ mixing with anion exchange resins in order to modify ACs from not only the external surface but also inside the pores. In 50 mM phosphate buffer solution (PBS), the in situ anchoring of QAE was a more effective way to increase the power. The highest power density of 2781 ± 36 mW/m(2), which is 10% higher than that of the control, was obtained using QAE-anchored AC cathodes. When the medium was switched to an unbuffered NaCl solution, the increase in maximum power density (885 ± 25 mW/m(2)) was in accordance with the anion exchange capacity (0.219 mmol/g). The highest power density of the anion exchange resin-mixed air cathode was 51% higher than that of the control, indicating that anion exchange is urgently needed in real wastewaters. Excess anchoring of QAE blocked both the mesopores and micropores, causing the power output to be inhibited.


Assuntos
Ar , Fontes de Energia Bioelétrica , Carvão Vegetal/química , Radical Hidroxila/química , Compostos de Amônio Quaternário/química , Soluções Tampão , Catálise , Eletricidade , Eletrodos , Concentração de Íons de Hidrogênio , Íons , Microscopia Eletrônica de Varredura , Porosidade , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA