Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Aging Cell ; : e14229, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831635

RESUMO

Idiopathic pulmonary fibrosis is a progressive and age-related disease that results from impaired lung repair following injury. Targeting senescent myofibroblasts with senolytic drugs attenuates pulmonary fibrosis, revealing a detrimental role of these cells in pulmonary fibrosis. The mechanisms underlying the occurrence and persistence of senescent myofibroblasts in fibrotic lung tissue require further clarification. In this study, we demonstrated that senescent myofibroblasts are resistant to apoptosis by upregulating the proapoptotic protein BAX and antiapoptotic protein BCL-2 and BCL-XL, leading to BAX inactivation. We further showed that high levels of inactive BAX-mediated minority mitochondrial outer membrane permeabilization (minority MOMP) promoted DNA damage and myofibroblasts senescence after insult by a sublethal stimulus. Intervention of minority MOMP via the inhibition of caspase activity by quinolyl-valyl-O-methylaspartyl-[2,6-difluorophenoxy]-methyl ketone (QVD-OPH) or BAX knockdown significantly reduced DNA damage and ultimately delayed the progression of senescence. Moreover, the BAX activator BTSA1 selectively promoted the apoptosis of senescent myofibroblasts, as BTSA1-activated BAX converted minority MOMP to complete MOMP while not injuring other cells with low levels of BAX. Furthermore, therapeutic activation of BAX with BTSA1 effectively reduced the number of senescent myofibroblasts in the lung tissue and alleviated both reversible and irreversible pulmonary fibrosis. These findings advance the understanding of apoptosis resistance and cellular senescence mechanisms in senescent myofibroblasts in pulmonary fibrosis and demonstrate a novel senolytic drug for pulmonary fibrosis treatment.

2.
Theranostics ; 14(7): 2687-2705, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38773980

RESUMO

Rationale: Pulmonary fibrosis is a chronic progressive lung disease with limited therapeutic options. We previously revealed that there is iron deposition in alveolar epithelial type II cell (AECII) in pulmonary fibrosis, which can be prevented by the iron chelator deferoxamine. However, iron in the cytoplasm and the mitochondria has two relatively independent roles and regulatory systems. In this study, we aimed to investigate the role of mitochondrial iron deposition in AECII injury and pulmonary fibrosis, and to find potential therapeutic strategies. Methods: BLM-treated mice, MLE-12 cells, and primary AECII were employed to establish the mouse pulmonary fibrosis model and epithelial cells injury model, respectively. Mitochondrial transplantation, siRNA and plasmid transfection, western blotting (WB), quantitative real-time polymerase chain reaction (RT-qPCR), polymerase chain reaction (PCR), immunofluorescence, immunoprecipitation (IP), MitoSOX staining, JC-1 staining, oxygen consumption rate (OCR) measurement, and Cell Counting Kit-8 (CCK8) assay were utilized to elucidate the role of mitochondrial iron deposition in cell and lung fibrosis and determine its mechanism. Results: This study showed that prominent mitochondrial iron deposition occurs within AECII in bleomycin (BLM)-induced pulmonary fibrosis mouse model and in BLM-treated MLE-12 epithelial cells. Further, the study revealed that healthy mitochondria rescue BLM-damaged AECII mitochondrial iron deposition and cell damage loss. Mitoferrin-2 (MFRN2) is the main transporter that regulates mitochondrial iron metabolism by transferring cytosolic iron into mitochondria, which is upregulated in BLM-treated MLE-12 epithelial cells. Direct overexpression of MFRN2 causes mitochondrial iron deposition and cell damage. In this study, decreased ubiquitination of the ubiquitin ligase F-box/LRR-repeat protein 5 (FBXL5) degraded iron-reactive element-binding protein 2 (IREB2) and promoted MFRN2 expression as well as mitochondrial iron deposition in damaged AECII. Activation of the prostaglandin E2 receptor EP4 subtype (EP4) receptor signaling pathway counteracted mitochondrial iron deposition by downregulating IREB2-MFRN2 signaling through upregulation of FBXL5. This intervention not only reduced mitochondrial iron content but also preserved mitochondrial function and protected against AECII damage after BLM treatment. Conclusion: Our findings highlight the unexplored roles, mechanisms, and regulatory approaches of abnormal mitochondrial iron metabolism of AECII in pulmonary fibrosis. Therefore, this study deepens the understanding of the mechanisms underlying pulmonary fibrosis and offers a promising strategy for developing effective therapeutic interventions using the EP4 receptor activator.


Assuntos
Células Epiteliais Alveolares , Bleomicina , Modelos Animais de Doenças , Ferro , Mitocôndrias , Fibrose Pulmonar , Animais , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/induzido quimicamente , Camundongos , Ferro/metabolismo , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Linhagem Celular , Masculino
3.
Medicine (Baltimore) ; 102(37): e34368, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37713893

RESUMO

To investigate sexual dimorphism of serum pigment epithelium-derived factor (PEDF) and its influencing factors in healthy individuals. A total of 162 healthy people (69 males, 93 females) who underwent health examinations in our department were selected. Serum PEDF, estradiol and other metabolic indices were measured, and homeostasis model assessment of insulin resistance (HOMA-IR) and homeostasis model assessment of ß-cell function (HOMA-ß) were calculated to evaluate insulin resistance and ß-cell function, respectively. Subjects were divided into < 50 years and ≥ 50 years groups to explore the sexual dimorphism of serum PEDF in different age groups. We found no statistically significant difference in serum PEDF levels between men and women in total. However, in the group of subjects under 50 years old, men had significantly higher PEDF levels than women (9.32 ±â€…2.07 µg/mL vs 8.24 ±â€…2.29 µg/mL, P < .05), and no sex difference was found in the ≥ 50 years group. In women, serum PEDF levels were significantly higher in subjects aged 50 years and over than in those younger than 50 years of age (9.56 ±â€…3.05 µg/mL vs 8.25 ±â€…2.30 µg/mL, P < .05). In men, there was no significant difference in serum PEDF levels between the 2 age groups. In women, correlation analysis showed that serum PEDF levels were significantly correlated with body mass index, waist circumference, diastolic blood pressure (DBP), 2-h postprandial glucose, fasting and 2-h postprandial insulin, HOMA-ß, HOMA-IR, aminotransferase, triacylglycerol, and estradiol. Elevated triacylglycerol and aminotransferase and decreased estradiol were significant predictors of increased PEDF concentrations in women. There is sexual dimorphism in circulating PEDF levels, which may be related to estrogen status.


Assuntos
Serpinas , Caracteres Sexuais , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estradiol , Proteínas do Olho , Resistência à Insulina , Serpinas/metabolismo
4.
Cell Mol Life Sci ; 80(10): 308, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37768341

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease characterized by extensive extracellular matrix (ECM) deposition by activated myofibroblasts, which are specialized hyper-contractile cells that promote ECM remodeling and matrix stiffening. New insights on therapeutic strategies aimed at reversing fibrosis by targeting myofibroblast fate are showing promise in promoting fibrosis resolution. Previously, we showed that a novel adipocytokine, omentin-1, attenuated bleomycin (BLM)-induced lung fibrosis by reducing the number of myofibroblasts. Apoptosis, deactivation, and reprogramming of myofibroblasts are important processes in the resolution of fibrosis. Here we report that omentin-1 reverses established lung fibrosis by promoting mechanically activated myofibroblasts dedifferentiation into lipofibroblasts. Omentin-1 promotes myofibroblasts lipogenic differentiation by inhibiting dimerization and nuclear translocation of glycolytic enzymes pyruvate kinase isoform M2 (PKM2) and activation of the downstream Yes-associated protein (YAP) by increasing the cofactor fructose-1,6-bisphosphate (F1, 6BP, FBP). Moreover, omentin-1 activates proliferator-activated receptor gamma (PPARγ) signaling, the master regulator of lipogenesis, and promotes the upregulation of the lipogenic differentiation-related protein perilipin 2 (PLIN2) by suppressing the PKM2-YAP pathway. Ultimately, omentin-1 facilitates myofibroblasts transformation into the lipofibroblast phenotype, with reduced collagen synthesis and enhanced degradation properties, which are crucial mechanisms to clear the ECM deposition in fibrotic tissue, leading to fibrosis resolution. Our results indicate that omentin-1 targets mechanical signal accelerates fibrosis resolution and reverses established lung fibrosis by promoting myofibroblasts lipogenic differentiation, which is closely associated with ECM clearance in fibrotic tissue. These findings suggest that targeting mechanical force to promote myofibroblast lipogenic differentiation is a promising therapeutic strategy against persistent lung fibrosis.


Assuntos
Fibrose Pulmonar Idiopática , PPAR gama , Humanos , PPAR gama/genética , Lipogênese , Fibroblastos , Diferenciação Celular
5.
Pak J Pharm Sci ; 36(4(Special)): 1297-1303, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37606019

RESUMO

This study investigates the connection between abnormal liver enzymes and macro vascular disease in type 2 diabetes mellitus (T2DM) patients with non-alcoholic fatty liver disease (NAFLD). Clinical data from 276 T2DM patients with NAFLD were retrospectively examined and divided into two groups based on the presence or absence of macro vascular disease. Various biochemical markers were tested, including fasting C-peptide, total bilirubin (TBil), total protein (TP), albumin (Alb), C-reactive protein (CRP) and the insulin resistance index (HOMA-IR). The study found no significant differences in demographic variables between the two groups. However, patients with macro vascular disease had significantly higher levels of fasting C-peptide, CRP, HOMA-IR, TBil, TP, Alb and certain blood lipid markers. The study concludes that in T2DM patients with NAFLD, increased blood lipids, liver function and inflammatory factors are risk factors for macro vascular disease, suggesting the importance of clinical management to lower macro vascular disease prevalence.


Assuntos
Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Doenças Vasculares , Humanos , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiologia , Peptídeo C , Estudos Retrospectivos , Fatores de Risco , Albuminas , Proteína C-Reativa , Bilirrubina
6.
PLoS One ; 18(8): e0289530, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37556489

RESUMO

BACKGROUND: Studies have shown that the release of endogenous glutamate (Glu) participates in lung injury by activating N-methyl-D-aspartate receptor (NMDAR), but the mechanism is still unclear. This study was to investigate the effects and related mechanisms of Glu on the lipid synthesis of pulmonary surfactant (PS) in isolated rat lung tissues. METHODS: The cultured lung tissues of adult SD rats were treated with Glu. The amount of [3H]-choline incorporation into phosphatidylcholine (PC) was detected. RT-PCR and Western blot were used to detect the changes of mRNA and protein expression of cytidine triphosphate: phosphocholine cytidylyltransferase alpha (CCTα), a key regulatory enzyme in PC biosynthesis. Western blot was used to detect the expression of NMDAR1, which is a functional subunit of NMDAR. Specific protein 1 (Sp1) expression plasmids were used. After transfected with Sp1 expression plasmids, the mRNA and protein levels of CCTα were detected by RT-PCR and Western blot in A549 cells. After treated with NMDA and MK-801, the mRNA and protein levels of Sp1 were detected by RT-PCR and Western blot in A549 cells. RESULTS: Glu decreased the incorporation of [3H]-choline into PC in a concentration- and time- dependent manner. Glu treatment significantly reduced the mRNA and protein levels of CCTα in lungs. Glu treatment up-regulated NMDAR1 protein expression, and the NMDAR blocker MK-801 could partially reverse the reduction of [3H]-choline incorporation induced by Glu (10-4 mol/L) in lungs. After transfected with Sp1 plasmid for 30 h, the mRNA and protein expression levels of CCTα were increased and the protein expression of Sp1 was also up-regulated. After A549 cells were treated with NMDA, the level of Sp1 mRNA did not change significantly, but the expression of nucleus protein in Sp1 was significantly decreased, while the expression of cytoplasmic protein was significantly increased. However, MK-801could reverse these changes. CONCLUSIONS: Glu reduced the biosynthesis of the main lipid PC in PS and inhibited CCTα expression by activating NMDAR, which were mediated by the inhibition of the nuclear translocation of Sp1 and the promoter activity of CCTα. In conclusion, NMDAR-mediated Glu toxicity leading to impaired PS synthesis may be a potential pathogenesis of lung injury.


Assuntos
Lesão Pulmonar , Surfactantes Pulmonares , Fator de Transcrição Sp1 , Animais , Ratos , Colina/metabolismo , Colina-Fosfato Citidililtransferase/genética , Colina-Fosfato Citidililtransferase/metabolismo , Maleato de Dizocilpina , Ácido Glutâmico , N-Metilaspartato , Fosfatidilcolinas , Surfactantes Pulmonares/metabolismo , Ratos Sprague-Dawley , RNA Mensageiro/metabolismo , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo
7.
Biochim Biophys Acta Mol Cell Res ; 1870(7): 119535, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37451346

RESUMO

Ferroptosis, a newly discovered type of regulated cell death, has been implicated in numerous human diseases. Idiopathic pulmonary fibrosis (IPF) is a progressive and ultimately fatal interstitial lung disease with poor prognosis and limited treatment options. Emerging evidence has linked ferroptosis and glutamate-determined cell fate which is considered a new light on the etiology of pulmonary fibrosis. Here, we observed that N-methyl d-aspartate receptor (NMDAR) activation promoted cell damage and iron deposition in MLE-12 cells in a dose-, time-, and receptor-dependent manner. This mediated substantial Ca2+ influx, upregulated the expression levels of nNOS and IRP1, and affected intracellular iron homeostasis by regulating the expression of iron transport-related proteins (i.e., TFR1, DMT1, and FPN). Excessive iron load promoted the continuous accumulation of total intracellular and mitochondrial reactive oxygen species, which ultimately led to ferroptosis. NMDAR inhibition reduced lung injury and pulmonary fibrosis in bleomycin-induced mice. Bleomycin stimulation upregulated the expression of NMDAR1, nNOS, and IRP1 in mouse lung tissues, which ultimately led to iron deposition via regulation of the expression of various iron metabolism-related genes. NMDAR activation initiated the pulmonary fibrosis process by inducing iron deposition in lung tissues and ferroptosis of alveolar type II cells. Our data suggest that NMDAR activation regulates the expression of iron metabolism-related genes by promoting calcium influx, increasing nNOS and IRP1 expression, and increasing iron deposition by affecting cellular iron homeostasis, ultimately leading to mitochondrial damage, mitochondrial dysfunction, and ferroptosis. NMDAR activation-induced ferroptosis of alveolar type II cells might be a key event to the initiation of pulmonary fibrosis.


Assuntos
Ferroptose , Fibrose Pulmonar , Camundongos , Humanos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Ferroptose/genética , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Pulmão/metabolismo , Bleomicina/efeitos adversos , Bleomicina/metabolismo , Ferro/metabolismo
8.
Medicine (Baltimore) ; 102(26): e34053, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37390232

RESUMO

PURPOSE: To take a systematic bibliometric analysis and generate the knowledge mapping of diabetic foot research, basing on big data from Web of Science Core Collection (WoSCC) database. METHODS: Two authors retrieved the WoSCC independently, to obtain publications in field of diabetic foot. CiteSpace was used to detect the co-occurrence relationships of authors, keywords, institutions, and countries/regions, co-citation relationships of authors, references, and journals, and distribution of WoS category. RESULTS: A total of 10,822 documents were included, with 39,541 authors contributed to this field. "Armstrong DG," "Lavery LA," and "Lipsky BA" are the top 3 productive authors, and "Armstrong DG," "Boulton AJM," and "Lavery LA" were most commonly cited. The United States, England and China are the most productive countries, and Univ Washington, Univ Manchester and Harvard Univ published the largest quantity of articles. "Diabetes Care," "Diabetic Med," and "Diabetologia" are the most frequently cited journals, providing the greatest knowledge base. Clustering analysis of keywords co-occurrence map presented the following hotspots: #1 diabetic wound healing, #2 diabetic polyneuropathy, #3 plantar pressure, #4 diabetic foot infection, #5 endovascular treatment, and #6 hyperbaric oxygen therapy. CONCLUSION: This study performed a global overview of diabetic foot research using bibliometric and visualization methods, which would provide helpful references for researchers focusing on this area to capture the future trend.


Assuntos
Diabetes Mellitus , Pé Diabético , Neuropatias Diabéticas , Humanos , Bibliometria , Big Data , China
9.
Biomedicines ; 11(5)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37238950

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by myofibroblast proliferation and abnormal accumulation of extracellular matrix in the lungs. After lung injury, M2 macrophages mediate the pathogenesis of pulmonary fibrosis by secreting fibrotic cytokines that promote myofibroblast activation. The TWIK-related potassium channel (TREK-1, also known as KCNK2) is a K2P channel that is highly expressed in cardiac, lung, and other tissues; it worsens various tumors, such as ovarian cancer and prostate cancer, and mediates cardiac fibrosis. However, the role of TREK-1 in lung fibrosis remains unclear. This study aimed to examine the effects of TREK-1 on bleomycin (BLM)-induced lung fibrosis. The results show that TREK-1 knockdown, mediated by the adenovirus or pharmacological inhibition of TREK-1 with fluoxetine, resulted in diminished BLM-induced lung fibrosis. TREK-1 overexpression in macrophages remarkably increased the M2 phenotype, resulting in fibroblast activation. Furthermore, TREK-1 knockdown and fluoxetine administration directly reduced the differentiation of fibroblasts to myofibroblasts by inhibiting the focal adhesion kinase (FAK)/p38 mitogen-activated protein kinases (p38)/Yes-associated protein (YAP) signaling pathway. In conclusion, TREK-1 plays a central role in the pathogenesis of BLM-induced lung fibrosis, which serves as a theoretical basis for the inhibition of TREK-1 as a potential therapy protocol for lung fibrosis.

10.
Biomedicines ; 10(11)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36359232

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a fatal age-related chronic lung disease, characterized by progressive scarring of the lungs by activated fibroblasts. The effect of omentin-1 against pulmonary fibrosis and fibroblast activation has not been investigated. The purpose of this experiment is to investigate the role of omentin-1 in bleomycin (BLM)-induced lung fibrosis and its mechanism. Our results showed that the loss of omentin-1 exaggerated lung fibrosis induced by BLM. On the contrary, adenoviral-overexpression of omentin-1 significantly alleviated BLM-induced lung fibrosis both in preventive and therapeutic regimens. Moreover, omentin-1 prevented fibroblast activation determined by a decreased number of S100A4+ (fibroblasts marker) α-SMA+ cells in vivo, and a decreased level of α-SMA expression both in mice primary fibroblasts and human primary fibroblasts induced by TGF-ß in vitro. Furthermore, the phosphorylation of AMP-activated protein kinase (p-AMPK) was significantly lower in the fibrotic foci induced by BLM, and the adenoviral-overexpression of omentin-1 significantly increased the p-AMPK level in vivo. Importantly, Compound C, the inhibitor of AMPK, significantly attenuated the protective effect of omentin-1 on BLM-induced lung fibrosis and reversed the effect of omentin-1 on fibroblast activation by TGF-ß. Omentin-1 can be a promising therapeutic agent for the prevention and treatment of lung fibrosis.

11.
Diabetes Metab Syndr Obes ; 15: 2901-2909, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36177339

RESUMO

Purpose: To assess changes in pigment epithelium-derived factor (PEDF) levels in patients with metabolic syndrome (MetS) and to investigate sexual dimorphism in serum PEDF levels and their relationships with estradiol. Methods: A total of 318 individuals (145 men, 173 women) who underwent health examinations in our department were selected. Serum PEDF, estradiol and other metabolic parameters were determined. Homeostasis model assessment of insulin resistance (HOMA- IR) and homeostasis model assessment of ß-cell function (HOMA-ß) were calculated to evaluate insulin resistance and ß-cell function, respectively. Multiple linear regression analysis was used to analyse the factors influencing serum PEDF. Results: Serum PEDF levels were significantly higher in subjects with MetS in both men and women (12.09±2.75 vs 8.97±3.19 µg/mL in men and 11.31±2.79 vs 8.40±2.32 µg/mL in women, MetS vs non-MetS, P<0.001). Correlation analysis showed that serum PEDF levels were significantly correlated with body mass index (BMI), waist circumference, waist-to-hip ratio, diastolic blood pressure (DBP), fasting and 2-h postprandial glucose, fasting and 2-h postprandial insulin, HOMA-ß, HOMA-IR, hemoglobin A1c (HbA1c), alanine aminotransferase (ALT), aspartate aminotransferase (AST), uric acid (UA), triacylglycerol (TG) and high-density lipoprotein cholesterol (HDL-C). Elevated ALT, HOMA-IR and TG were significant predictors of increased PEDF concentrations. In women, estradiol was inversely correlated with PEDF levels (r=-0.25, P=0.011), and the association was no longer significant after adjustment for ALT. Conclusion: PEDF could be used as a biomarker of MetS in both men and women. This study reported for the first time that circulating PEDF displays sexual dimorphism, which could be related to estrogen. The association between estrogen and circulating PEDF levels was attenuated after adjusting for ALT.

12.
Ann Transl Med ; 10(11): 642, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35813315

RESUMO

Background: A large number of our previous studies showed that endogenous glutamate and N-methyl-D-aspartate receptor (NMDAR) activation may be involved in various types of acute lung injury, airway inflammation, asthma, and pulmonary fibrosis. In animal models, the transplantation of exogenous bone marrow mesenchymal stem cells (BM-MSCs) is the most promising treatment for idiopathic pulmonary fibrosis. However, there are limited reports on the status of endogenous BM-MSCs in the process of bleomycin-induced pulmonary fibrosis in animals. Methods: We constructed a mouse model of bleomycin-induced pulmonary fibrosis. In vitro, the senescence model of BM-MSCs was constructed with hydrogen peroxide and high concentration of N-methyl-D-aspartate (NDMA). The changes in aging-related indexes were detected by senescence associated beta-galactosidase (SA-ß-gal) staining, western blot, flow cytometry and real time-PCR. The epithelial-mesenchymal transformation (EMT) changes of mouse lung epithelial cells (MLE-12) co-cultured with senescent BM-MSCs were detected by immunofluorescence and western blotting. Results: We observed that endogenous BM-MSCs senescence occurs during bleomycin-induced pulmonary fibrosis in mice, and the model group had a higher expression level of the NMDAR subunit than the control group. We observed a significant increase in NMDAR subunit expression in a hydrogen peroxide-induced senescent cell model in vitro. BM-MSCs showed senescence-related phenotype and cell cycle arrest after high concentration of NMDA treatment. At the same time, the expression levels of the classic Wingless and int-1 (Wnt) pathway protein ß-cantenin and downstream cyclin D1 also changed. In the co-culture of aged BM-MSCs and MLE-12 cells, EMT can be promoted in MLE-12 cells, and MK-801 can partially antagonize the occurrence of EMT. The NMDAR antagonist can partially prevent the above phenomenon. Conclusions: High concentrations of NMDA can promote senescence of BM-MSCs. NMDAR blockers may inhibit endogenous BM-MSCs aging through the WNT signaling pathway, thereby reducing the effect of bleomycin-induced pulmonary fibrosis.

13.
J Virol ; 95(6)2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33328308

RESUMO

Classical swine fever (CSF), caused by classical swine fever virus (CSFV), is a highly contagious disease of swine with high morbidity and mortality that negatively affects the pig industry worldwide, in particular in China. Soon after the endocytosis of CSFV, the virus makes full use of the components of host cells to complete its life cycle. The endocytosis sorting complex required for transport (ESCRT) system is a central molecular machine for membrane protein sorting and scission in eukaryotic cells that plays an essential role in many physiological metabolic processes, including invasion and egress of envelope viruses. However, the molecular mechanism that ESCRT uses to regulate the replication of CSFV is unknown. In this study, we demonstrated that the ESCRT-I complex Tsg101 protein participates in clathrin-mediated endocytosis of CSFV and is also involved in CSFV trafficking. Tsg101 assists the virus in entering the host cell through the late endosome (Rab7 and Rab9) and finally reaching the lysosome (Lamp-1). Interestingly, Tsg101 is also involved in the viral replication process by interacting with nonstructural proteins 4B and 5B of CSFV. Finally, confocal microscopy showed that the replication complex of Tsg101 and double-stranded RNA (dsRNA) or NS4B and NS5B protein was close to the endoplasmic reticulum (ER), not the Golgi, in the cytoplasm. Collectively, our finding highlights that Tsg101 regulates the process of CSFV entry and replication, indicating that the ESCRT plays an important role in the life cycle of CSFV. Thus, ESCRT molecules could serve as therapeutic targets to combat CSFV infection.IMPORTANCE CSF, caused by CSFV, is a World Organization for Animal Health (OIE) notifiable disease and causes significant financial losses to the pig industry globally. The ESCRT machinery plays an important regulatory role in several members of the genera Flavivirus and Hepacivirus within the family Flaviviridae, such as hepatitis C virus, Japanese encephalitis virus, and dengue virus. Previous reports have shown that assembling and budding of these viruses require ESCRT. However, the role of ESCRT in Pestivirus infection remains to be elucidated. We determined the molecular mechanisms of the regulation of CSFV infection by the major subunit Tsg101 of ESCRT-I. Interestingly, Tsg101 plays an essential regulatory role in both clathrin-mediated endocytosis and genome replication of CSFV. Overall, the results of this study provide further insights into the molecular function of ESCRT-I complex protein Tsg101 during CSFV infection, which may serve as a molecular target for pestivirus inhibitors.


Assuntos
Vírus da Febre Suína Clássica/fisiologia , Proteínas de Ligação a DNA/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Fatores de Transcrição/metabolismo , Internalização do Vírus , Replicação Viral , Animais , Linhagem Celular , Peste Suína Clássica/metabolismo , Peste Suína Clássica/virologia , Proteínas de Ligação a DNA/genética , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Endossomos/metabolismo , Endossomos/virologia , Interações Hospedeiro-Patógeno , Lisossomos/metabolismo , Lisossomos/virologia , RNA Viral/metabolismo , Suínos , Fatores de Transcrição/genética , Proteínas não Estruturais Virais/metabolismo , Compartimentos de Replicação Viral/metabolismo
14.
Vet Microbiol ; 238: 108436, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31648726

RESUMO

The level of cholesterol in host cells has been demonstrated to affect viral infection. Our previous studies showed that cholesterol-rich membrane rafts mediated the entry of classical swine fever virus (CSFV) into PK-15 or 3D4/21 cells, but the role of cholesterol post entry was still not clear. In this study, we found that CSFV replication before fusion was affected when the cholesterol trafficking in infected cells was disrupted using a cholesterol transport inhibitor, U18666A. Our data showed that U18666A affected both the fusion and replication steps in the life cycle of the virus, but not its binding and entry steps. The subsequent experiments confirmed that niemann-pick C1 (NPC1), a lysosomal membrane protein that helps cholesterol to leave the lysosome, was affected by U18666A, which led to the accumulation of cholesterol in lysosomes and inhibition of CSFV replication. Imipramine, a cationic hydrophobic amine similar to U18666A, also inhibited CSFV replication via similar mechanism. Surprisingly, the antiviral effect of U18666A was restored by the histone deacetylase inhibitor (HDACi), Vorinostat, which suggested that HDACi reverted the dysfunction of NPC1, and intra-cellular cholesterol accumulation disappeared and CSFV replicability resumed. Together, these data indicated that CSFV transformed from early endosome and late endosome into lysosome after endocytosis for further replication and that U18666A was a potential drug candidate for anti-pestivirus treatment.


Assuntos
Androstenos/farmacologia , Antivirais/farmacologia , Colesterol/metabolismo , Vírus da Febre Suína Clássica/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Transporte Biológico/efeitos dos fármacos , Suínos
15.
Gene ; 703: 26-34, 2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-30935924

RESUMO

Adrenocortical cancer (ACC) is an aggressive malignancy with no available effective treatments; therefore, exploring the molecular mechanisms involved in the initiation and progression of ACC is quite important. Here, we found that the long noncoding RNA urothelial carcinoma-associated 1 (UCA1) was highly expressed in ACC tissues and closely associated with the TNM stage and metastasis of ACC patients. Overexpression of UCA1 significantly promoted the proliferation and suppressed the apoptosis of ACC cells. Mechanism study showed that UCA1 acted as sponge of miR-298 and decreased the expression abundance of miR-298 in ACC cells. Further investigation identified that miR-298 bound the 3'-UTR of the cyclin-dependent kinase 6 (CDK6) and inhibited the expression of CDK6. Consistently, ectopic expressed UCA1 suppressed miR-298 and up-regulated the expression of CDK6, which promoted the cell cycle progression of ACC cells. Taken together, our results identified the potential oncogenic function of UCA1 in ACC by regulating the miR-298-CDK6 axis.


Assuntos
Neoplasias do Córtex Suprarrenal/genética , Quinase 6 Dependente de Ciclina/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Regiões 3' não Traduzidas , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Neoplásica , Estadiamento de Neoplasias , Transdução de Sinais , Regulação para Cima
16.
Cell Physiol Biochem ; 52(2): 225-231, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30816670

RESUMO

BACKGROUND/AIMS: The present study aimed to investigate the serum levels of adiponectin (APN) and adiponectin receptor 1 (AdipoR1) in patients with type 2 diabetes mellitus (T2DM) combined with macrovascular complications (MVC), as well as their correlation with clinical parameters. METHODS: A total of 60 T2DM patients were divided into 2 groups according to the presence of MVC: T2DM + MVC group (n=30) and T2DM group (n=30). Additionally, 30 healthy people were selected as control group (NC group). Clinical data and biological parameters were detected and recorded. T test was performed to compare the differences between two groups, and the results were corrected using Bonferroni method. Meanwhile, the correlation analysis and multiple stepwise regression analysis were used to analyze the association of APN and AdipoR1 with clinical factors. RESULTS: The levels of APN and AdipoR1 were significantly decreased in T2DM group and T2DM + MVC group compared with NC group, with the lowest value in T2DM + MVC group (all P<0.01). Serum APN levels were positively correlated with FINS and TG (r = 0.412, 0.316, respectively; both P<0.05), and negatively correlated with SBP, DBP and LDL-C (r = -0.292, -0.383, -0.334, respectively; all P<0.05). Serum levels of AdipoR1 were positively correlated with APN (r = 0.726, P<0.01), and negatively correlated with BMI, SBP, DBP, FBG, TC and LDL-C (r = -0.440, -0.446, -0.374, -0.444, -0.344, -0.709, respectively; all P<0.01). CONCLUSION: Serum levels of APN and AdipoR1 are significantly lower in T2DM group and T2DM + MVC group, showing lowest value in T2DM + MVC group. APN and AdipoR1 levels may influence glucose and lipid metabolism in T2DM patients.


Assuntos
Adiponectina/sangue , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/sangue , Angiopatias Diabéticas/sangue , Metabolismo dos Lipídeos , Receptores de Adiponectina/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
17.
Med Sci Monit ; 24: 6079-6084, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30171178

RESUMO

BACKGROUND LncRNA CASC2 has been established to have critical functions in tumorigenesis but, while its involvement in high-glucose-induced chronic renal failure remains unclear. MATERIAL AND METHODS We included patients with type 2 diabetes combined with chronic renal failure, as well as patients with diabetic retinopathy, diabetic ketoacidosis, diabetic foot infections or diabetic cardiomyopathy, and diabetic patients without any obvious complication, as well as healthy controls. Blood samples and renal tissues were obtained from each participant and expression of lncRNA CASC2 in those tissues was detected by qRT-PCR. Diagnostic value of lncRNA CASC2 for type 2 diabetes combined with chronic renal failure was evaluated by ROC curve analysis. All patients were followed up for 5 years and the occurrence of chronic renal failure was recorded. RESULTS Compared with healthy controls, expression of lncRNA CASC2 in serum and renal tissue was specifically downregulated in patients with type 2 diabetes combined with chronic renal failure but not in type 2 diabetic patients combined with other complications. Follow-up showed that patients with low serum level of lncRNA CASC2 had significantly higher incidence of chronic renal failure. CONCLUSIONS lncRNA CASC2 is a reliable diagnostic biomarker for type 2 diabetes combined with chronic renal failure and low serum level of lncRNA CASC2 predicts the occurrence of chronic renal failure in patients with type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/genética , Nefropatias Diabéticas/genética , Falência Renal Crônica/genética , RNA Longo não Codificante/sangue , Proteínas Supressoras de Tumor/genética , Adulto , Idoso , Estudos de Casos e Controles , Proliferação de Células/genética , Diabetes Mellitus Tipo 2/sangue , Nefropatias Diabéticas/sangue , Regulação para Baixo , Feminino , Humanos , Falência Renal Crônica/sangue , Masculino , Pessoa de Meia-Idade , RNA Longo não Codificante/genética , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/genética , Proteínas Supressoras de Tumor/sangue
18.
Medicine (Baltimore) ; 97(28): e11232, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29995756

RESUMO

Monocyte chemotactant protein-1 (MCP-1), a pro-inflammatory cytokine, plays an important role in inflammatory process. In present study, we evaluated the association of MCP-1 gene rs1024611 polymorphism with risk and clinical characteristics of diabetic foot ulcers (DFUs).This study recruited 116 patients with DFUs, 135 patients with diabetes mellitus (DM) without complications (non-DFU), and 149 healthy controls (HCs). MCP-1 gene rs1024611 polymorphism was genotyped by direct sequencing. The expression of MCP-1 was analyzed using quantitative real-time polymerase chain reaction. Odds ratios (ORs) and 95% confidence intervals (CIs) were used to assume the association strength.Individuals with rs1024611 AG and GG genotypes exhibited significantly higher susceptibility to DFUs, in the comparison with HCs (AG vs AA, OR = 2.364, 95% CI = 1.021-5.470; GG vs AA, OR = 2.686, 95% CI = 1.154-6.255). Meanwhile, G allele was associated with increased DFUs susceptibility (OR = 1.457, 95% CI = 1.014-2.093). Besides, rs1024611 SNP was slightly correlated with increased DFUs susceptibility in patients with DM. GG genotype of rs1024611 was significantly correlated with higher epidermal thickness and lower dermis thickness in patients with DFUs (P < .01). Patients with DFU exhibited upregulation of MCP-1 mRNA, and GG genotype was correlated with enhanced MCP-1 expression in DFU and non-DFU groups.Rs1024611 polymorphism was significantly associated with MCP-1 expression and individual susceptibility to DFUs.


Assuntos
Quimiocina CCL2/genética , Diabetes Mellitus Tipo 2/complicações , Pé Diabético/genética , Idoso , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
19.
J Virol ; 92(15)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29769350

RESUMO

The members of Flaviviridae utilize several endocytic pathways to enter a variety of host cells. Our previous work showed that classical swine fever virus (CSFV) enters porcine kidney (PK-15) cells through a clathrin-dependent pathway that requires Rab5 and Rab7. The entry mechanism for CSFV into other cell lines remains unclear, for instance, porcine alveolar macrophages (3D4/21 cells). More importantly, the trafficking of CSFV within endosomes controlled by Rab GTPases is unknown in 3D4/21 cells. In this study, entry and postinternalization of CSFV were analyzed using chemical inhibitors, RNA interference, and dominant-negative (DN) mutants. Our data demonstrated that CSFV entry into 3D4/21 cells depends on caveolae, dynamin, and cholesterol but not clathrin or macropinocytosis. The effects of DN mutants and knockdown of four Rab proteins that regulate endosomal trafficking were examined on CSFV infection, respectively. The results showed that Rab5, Rab7, and Rab11, but not Rab9, regulate CSFV endocytosis. Confocal microscopy showed that virus particles colocalize with Rab5, Rab7, or Rab11 within 30 min after virus entry and further with lysosomes, suggesting that after internalization CSFV moves to early, late, and recycling endosomes and then into lysosomes before the release of the viral genome. Our findings provide insights into the life cycle of pestiviruses in macrophages.IMPORTANCE Classical swine fever, is caused by classical swine fever virus (CSFV). The disease is notifiable to World Organisation for Animal Health (OIE) in most countries and causes significant financial losses to the pig industry globally. Understanding the processes of CSFV endocytosis and postinternalization will advance our knowledge of the disease and provide potential novel drug targets against CSFV. With this objective, we used systematic approaches to dissect these processes in CSFV-infected 3D4/21 cells. The data presented here demonstrate for the first time to our knowledge that CSFV is able to enter cells via caveola-mediated endocytosis that requires Rab5, Rab7 and Rab11, in addition to the previously described classical clathrin-dependent pathway that requires Rab5 and Rab7. The characterization of CSFV entry will further promote our current understanding of Pestivirus cellular entry pathways and provide novel targets for antiviral drug development.


Assuntos
Cavéolas/metabolismo , Vírus da Febre Suína Clássica/metabolismo , Endocitose , Macrófagos Alveolares/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Animais , Cavéolas/virologia , Vírus da Febre Suína Clássica/genética , Macrófagos Alveolares/virologia , Suínos , Proteínas rab de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/genética , proteínas de unión al GTP Rab7
20.
Cell Physiol Biochem ; 45(6): 2187-2198, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29550812

RESUMO

BACKGROUND/AIMS: Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease. This study aims to investigate whether chloride channel 2 (ClC-2) is involved in high fat diet (HFD)-induced NAFLD and possible molecular mechanisms. METHODS: ClC-2 expression was liver-specifically downregulated using adeno-associated virus in C57BL/6 mice treated with a chow diet or HFD for 12 weeks. Peripheral blood and liver tissues were collected for biochemical and pathological estimation respectively. Western blotting was applied to detect the protein expressions of lipid synthesis-related enzymes and the phosphorylated level of IRS-1, Akt and mTOR. RESULTS: ClC-2 mRNA level was significantly increased in patients with non-alcoholic steatohepatitis, which positively correlated with the plasma levels of alanine transaminase (ALT), aspartate transaminase (AST) and insulin. Knockdown of ClC-2 in liver attenuated HFD-induced weight gain, obesity, hepatocellular ballooning, and liver lipid accumulation and fibrosis, accompanied by reduced plasma free fatty acid (FFA), triglyceride (TG), total cholesterol (TC), ALT, AST, glucose and insulin levels and homeostasis model of insulin resistance (HOMA-IR) value. Moreover, HFD-treated mice lacking ClC-2 showed inhibited hepatic lipid accumulation via regulating lipid metabolism through decreasing sterol regulatory element binding protein (SREBP)-1c expression and its downstream targeting enzymes such as fatty acid synthase (FAS), HMG-CoA reductase (HMGCR) and acetyl-Coenzyme A carboxylase (ACCα). In addition, in vivo and in vitro results demonstrated that ClC-2 downregulation in HFD-treated mice or HepG2 cells increased the sensitivity to insulin via activation of IRS-1/Akt/mTOR signaling pathway. CONCLUSION: Our present study reveals a critical role of ClC-2 in regulating metabolic diseases. Mice lacking ClC-2 are associated with a remarkably beneficial metabolic phenotype, suggesting that decreasing ClC-2 may be an attractive therapeutic strategy for the treatment of NAFLD.


Assuntos
Canais de Cloreto/genética , Técnicas de Silenciamento de Genes , Resistência à Insulina , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/genética , Regulação para Cima , Animais , Canais de Cloro CLC-2 , Canais de Cloreto/metabolismo , Dieta Hiperlipídica/efeitos adversos , Regulação para Baixo , Feminino , Deleção de Genes , Células Hep G2 , Humanos , Insulina/sangue , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA