Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 127: 111363, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38101218

RESUMO

At present the efficacy of immune checkpoint inhibitors (ICIs) remains limited. The lack of responsiveness in certain patients may be attributed to CD8+ T cell exhaustion within the tumor microenvironment (TME). Hematopoietic progenitor kinase 1 (HPK1) has been identified as a mediator of T cell dysfunction, leading to our hypothesis that HPK1 positive exhausted CD8+ T cells could serve as a predictor for ICIs' efficacy in NSCLC patients, and potentially indicate key cellular subset causing ICIs resistance. Here, we retrospectively collected tumor tissue samples from 36 NSCLC patients who underwent first-line immunotherapy. Using multiplex immunohistochemistry, we visualized various PD-1+CD8+ T cell subsets and explore biomarkers for response. The analysis endpoints included overall response rate (ORR), progression free survival (PFS), and overall survival (OS), correlating them with levels of cell infiltration or effective density. We found that the proportion of PD-1+CD8+ T cell subsets did not align with predictions for ORR, PFS, and OS. Conversely, a high infiltration of HPK1+PD-1+TIM-3+CD8+ T cells was identified as an independent risk factor for both PFS (P = 0.019) and OS (P = 0.03). These cells were found to express the highest levels of Granzyme B, and the secretion of Granzyme B in CD8+ T cell subsets was related to TCF-1. In conclusion, these data suggest that a high infiltration of HPK1+PD-1+TIM-3+CD8+ T cells correlates with poor clinical outcomes in NSCLC patients receiving immunotherapy. These cells may represent terminally exhausted T cells that fail to respond to ICIs, thereby laying the groundwork for the potential integration of HPK1 inhibitors with immunotherapy to enhance treatment strategy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Proteínas Serina-Treonina Quinases , Humanos , Linfócitos T CD8-Positivos , Neoplasias Pulmonares/tratamento farmacológico , Receptor de Morte Celular Programada 1 , Granzimas , Receptor Celular 2 do Vírus da Hepatite A , Estudos Retrospectivos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Intervalo Livre de Progressão , Imunoterapia , Prognóstico , Microambiente Tumoral
2.
Heliyon ; 9(12): e22088, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38125466

RESUMO

Purpose: Protein arginine methyltransferases (PRMTs) regulate several signal transduction pathways involved in cancer progression. Recently, it has been reported that PRMTs are closely related to anti-tumor immunity; however, the underlying mechanisms have yet to be studied in lung adenocarcinoma (LUAD). In this study, we focused on PRMT1 and PRMT5, key members of the PRMT family. And their signatures in lung carcinoma associated with prognosis, immune profile, and therapeutic response including immunotherapy and radiotherapy were explored. Methods: To understand the function of PRMT1 and PRMT5 in tumor cells, we examined the association between the expression of PRMT1 and PRMT5 and the clinical, genomic, and immune characteristics, as well as the sensitivity to immunotherapy and radiotherapy. Specifically, our investigation focused on the role of PRMT1 and PRMT5 in tumor progression, with particular emphasis on interferon-stimulated genes (ISGs) and the pathway of type I interferon. Furthermore, the influence of proliferation, migration, and invasion ability was investigated based on the expression of PRMT1 and PRMT5 in human lung adenocarcinoma cell lines. Results: Through the examination of receiver operating characteristic (ROC) and survival studies, PRMT1 and PRMT5 were identified as potential biomarkers for the diagnosis and prognosis. Additionally, heightened expression of PRMT1 or PRMT5 was associated with immunosuppressive microenvironments. Furthermore, a positive correlation was observed between the presence of PRMT1 or PRMT5 with microsatellite instability, tumor mutational burden, and neoantigens in the majority of cancers. Moreover, the predictive potential of PRMT1 or PRMT5 in individuals undergoing immunotherapy has been acknowledged. Our study ultimately revealed that the inhibition of PRMT1 and PRMT5 in lung adenocarcinoma resulted in the activation of the cGAS-STING pathway, especially after radiation. Favorable prognosis was observed in lung adenocarcinoma patients receiving radiotherapy with reduced PRMT1 or PRMT5 expression. It was also found that the expression of PRMT1 and PRMT5 influenced proliferation, migration, and invasion of human lung adenocarcinoma cell lines. Conclusion: The findings indicate that PRMT1 and PRMT5 exhibit potential as immune-related biomarkers for the diagnosis and prognosis of cancer. Furthermore, these biomarkers could be therapeutically targeted to augment the efficacy of immunotherapy and radiotherapy in lung adenocarcinoma.

4.
Front Oncol ; 13: 1195499, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37205200

RESUMO

Background: The utilization of the Gustave Roussy Immune Score (GRIm-Score) in patient selection for immunotherapy was initially reported. The objective of this retrospective study is to assess the potential of the GRIm-Score, a novel prognostic score based on nutritional and inflammatory markers, as a prognostic predictor in patients with small cell lung cancer (SCLC) undergoing immunotherapy. Methods: This retrospective study conducted at a single center included 159 patients with SCLC who received immunotherapy. The objective of the study was to investigate potential differences in overall survival (OS) and progression-free survival (PFS) among patients stratified by their GRIm-Score, utilizing the Kaplan-Meier survival analysis and the log-rank test. The final independent prognostic factors were identified through both propensity score matching (PSM) analysis and multivariable Cox proportional hazards regression analysis. Results: Our analysis of the 159 patients revealed that there was a significant decrease in both OS and PFS with each increase in the GRIm-Score group, displaying a stepwise pattern. Moreover, even after conducting PSM analysis, the significant associations between the modified three-category risk scale-based GRIm-Score and survival outcomes remained significant. Both the total cohort and PSM cohort were subjected to multivariable analysis, which demonstrated that the three-category risk assessment-based GRIm-Score was a valuable predictor of both OS and PFS. Conclusions: In addition, the GRIm-Score may serve as a valuable and non-invasive prognostic predictor for SCLC patients undergoing PD1/PD-L1 immunotherapy.

5.
Int J Radiat Oncol Biol Phys ; 116(5): 1175-1189, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36792015

RESUMO

PURPOSE: Although the combination of immunotherapy and radiation therapy to treat various malignancies is rapidly expanding, concerns regarding increased pulmonary toxicities remain. The mechanisms of immunotherapy- and irradiation-induced lung injury involve a complex interplay of cell types and signaling pathways, much of which remains to be elucidated. METHODS AND MATERIALS: C57/BL6 mice were treated with a single fraction (20 Gy) of radiation therapy to the right lung or 200 µg anti-Programmed cell death protein 1 antibody twice a week. At 7, 30, and 60 days after treatment, the lung tissues were obtained for unbiased single-cell RNA sequencing or histologic staining. The Seurat analysis pipeline, Cellchat, Monocol, and Single-Cell rEgulatory Network Inference and Clustering were used to define cell types, mechanisms, and mediators driving pathologic remodeling in response to this lung injury. Reverse transcription polymerase chain reaction, immunofluorescent staining, and multiplex immunohistochemistry were applied to validate the key results. RESULTS: Thirty distinct cell subsets encompassing 75,396 cells were identified. A comprehensive investigation of cell-cell crosstalk revealed that monokine signals derived from senescent fibroblasts were substantially elevated after lung injury. Independent analytical strategies revealed that senescence-like subtypes of fibroblasts, alveolar epithelial cells, B cells, and myeloid immune cells were functionally pathologic, with high expression of senescence-signature proteins, especially Apolipoprotein E, during injury response. Senescence markers were also elevated in irradiated human cell lines, mouse cell lines (B3T3 and L929), and the publicly available human pulmonary fibrosis data set. CONCLUSIONS: These findings demonstrate that the accumulation of senescence-like fibroblasts, macrophages, and alveolar epithelial cells is the primary common pathologic mechanism of immunotherapy- and irradiation-induced lung injury. These high-resolution transcriptomic data provide novel insights into therapeutic opportunities to predict or prevent therapy-induced lung injury.


Assuntos
Lesão Pulmonar , Fibrose Pulmonar , Lesões por Radiação , Humanos , Animais , Camundongos , Lesão Pulmonar/metabolismo , Pulmão/patologia , Fibrose Pulmonar/patologia , Lesões por Radiação/patologia , Imunoterapia , RNA/metabolismo , Senescência Celular
6.
Signal Transduct Target Ther ; 7(1): 258, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906199

RESUMO

Radiotherapy (RT) is delivered for purposes of local control, but can also exert systemic effect on remote and non-irradiated tumor deposits, which is called abscopal effect. The view of RT as a simple local treatment has dramatically changed in recent years, and it is now widely accepted that RT can provoke a systemic immune response which gives a strong rationale for the combination of RT and immunotherapy (iRT). Nevertheless, several points remain to be addressed such as the interaction of RT and immune system, the identification of the best schedules for combination with immunotherapy (IO), the expansion of abscopal effect and the mechanism to amplify iRT. To answer these crucial questions, we roundly summarize underlying rationale showing the whole immune landscape in RT and clinical trials to attempt to identify the best schedules of iRT. In consideration of the rarity of abscopal effect, we propose that the occurrence of abscopal effect induced by radiation can be promoted to 100% in view of molecular and genetic level. Furthermore, the "radscopal effect" which refers to using low-dose radiation to reprogram the tumor microenvironment may amplify the occurrence of abscopal effect and overcome the resistance of iRT. Taken together, RT could be regarded as a trigger of systemic antitumor immune response, and with the help of IO can be used as a radical and systemic treatment and be added into current standard regimen of patients with metastatic cancer.


Assuntos
Imunoterapia , Neoplasias , Terapia Combinada , Humanos , Neoplasias/radioterapia , Microambiente Tumoral
7.
Appl Spectrosc ; 76(9): 1100-1111, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35315296

RESUMO

In optical noninvasive glucose detection, how to detect the glucose-caused signals from the constant human variations and disturbed probing conditions is always the biggest challenge. Developing effective measurement strategies is essential to realize the detection. A near-infrared (NIR) spectroscopy-based strategy is studied to effectively solve the in vivo measurement issues, obtaining clean blood glucose-caused signals. Two solutions composing our strategy are applied to the NIR spectroscopy-based measurement system to acquire clean raw signals in the data collection, which are a customized high signal-to-noise ratio multi-ring InGaAs detector to reduce the influence of human variations, and a fixing and aiming method to reproduce a consistent measurement condition. Seventeen cases of glucose tolerance test (GTT) on healthy and diabetic volunteers were conducted to validate the strategy. The human experiment results clearly show that the expected blood glucose changes have been detected at 1550 nm. The average correlation coefficient of the 17 cases of GTT between light signal and glucose reference reaches 0.84. The proposed measurement strategy is verified feasible for the glucose detecting in vivo. The strategy provides references to further studies and product developments for the NIR spectroscopy-based glucose measurement and references to other optical measurements in vivo.


Assuntos
Glicemia , Glucose , Teste de Tolerância a Glucose , Humanos , Razão Sinal-Ruído , Espectroscopia de Luz Próxima ao Infravermelho/métodos
8.
J Cachexia Sarcopenia Muscle ; 13(2): 1210-1223, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35142084

RESUMO

BACKGROUND: Skeletal muscle atrophy is a common clinical manifestation of various neurotrauma and neurological diseases. In addition to the treatment of primary neuropathies, it is a clinical condition that should be investigated. FoxO3 activation is an indispensable mechanism in denervation-induced muscle atrophy; however, upstream factors that control FoxO3 expression and activity have not been fully elucidated. N6 -methyladenosine (m6 A) methylation is a novel mode of epitranscriptional gene regulation that affects several cellular processes. However, the biological significance of m6 A modification in FoxO3-dependent atrophy is unknown. METHODS: We performed gain-of-function and loss-of-function experiments and used denervation-induced muscle atrophy mouse model to evaluate the effects of m6 A modification on muscle mass control and FoxO3 activation. m6 A-sequencing and mass spectrometry analyses were used to establish whether histone deacetylase 4 (HDAC4) is a mediator of m6 A demethylase ALKBH5 regulation of FoxO3. A series of cellular and molecular biological experiments (western blot, immunoprecipitation, half-life assay, m6 A-MeRIP-qPCR, and luciferase reporter assays among others) were performed to investigate regulatory relationships among ALKBH5, HDAC4, and FoxO3. RESULTS: In skeletal muscles, denervation was associated with a 20.7-31.9% decrease in m6 A levels (P < 0.01) and a 35.6-115.2% increase in demethylase ALKBH5 protein levels (P < 0.05). Overexpressed ALKBH5 reduced m6 A levels, activated FoxO3 signalling, and induced excess loss in muscle wet weight (-10.3% for innervation and -11.4% for denervation, P < 0.05) as well as a decrease in myofibre cross-sectional areas (-35.8% for innervation and -33.3% for denervation, P < 0.05) during innervation and denervation. Specific deletion of Alkbh5 in the skeletal muscles prevented FoxO3 activation and protected mice from denervation-induced muscle atrophy, as evidenced by increased muscle mass (+16.0%, P < 0.05), size (+50.0%, P < 0.05) and MyHC expression (+32.6%, P < 0.05). Mechanistically, HDAC4 was established to be a crucial central mediator for ALKBH5 in enhancing FoxO3 signalling in denervated muscles. ALKBH5 demethylates and stabilizes Hdac4 mRNA. HDAC4 interacts with and deacetylates FoxO3, resulting in a significant increase in FoxO3 expression (+61.3-82.5%, P < 0.01) and activity (+51.6-122.0%, P < 0.001). CONCLUSIONS: Our findings elucidate on the roles and mechanisms of ALKBH5-mediated m6 A demethylation in the control of muscle mass during denervation and activation of FoxO3 signalling by targeting HDAC4. These results suggest that ALKBH5 is a potential therapeutic target for neurogenic muscle atrophy.


Assuntos
Homólogo AlkB 5 da RNA Desmetilase , Proteína Forkhead Box O3 , Histona Desacetilases , Atrofia Muscular , Homólogo AlkB 5 da RNA Desmetilase/genética , Animais , Denervação , Proteína Forkhead Box O3/genética , Histona Desacetilases/genética , Camundongos , Músculo Esquelético/patologia , Atrofia Muscular/genética , Transdução de Sinais
9.
Front Immunol ; 12: 774807, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925345

RESUMO

Radiation-induced lung injury (RILI) is a form of radiation damage to normal lung tissue caused by radiotherapy (RT) for thoracic cancers, which is most commonly comprised of radiation pneumonitis (RP) and radiation pulmonary fibrosis (RPF). Moreover, with the widespread utilization of immunotherapies such as immune checkpoint inhibitors as first- and second-line treatments for various cancers, the incidence of immunotherapy-related lung injury (IRLI), a severe immune-related adverse event (irAE), has rapidly increased. To date, we know relatively little about the underlying mechanisms and signaling pathways of these complications. A better understanding of the signaling pathways may facilitate the prevention of lung injury and exploration of potential therapeutic targets. Therefore, this review provides an overview of the signaling pathways of RILI and IRLI and focuses on their crosstalk in diverse signaling pathways as well as on possible mechanisms of adverse events resulting from combined radiotherapy and immunotherapy. Furthermore, this review proposes potential therapeutic targets and avenues of further research based on signaling pathways. Many new studies on pyroptosis have renewed appreciation for the value and importance of pyroptosis in lung injury. Therefore, the authors posit that pyroptosis may be the common downstream pathway of RILI and IRLI; discussion is also conducted regarding further perspectives on pyroptosis as a crucial signaling pathway in lung injury treatment.


Assuntos
Inibidores de Checkpoint Imunológico/efeitos adversos , Lesão Pulmonar/etiologia , Fibrose Pulmonar/etiologia , Pneumonite por Radiação/etiologia , Proteína HMGB1/fisiologia , Humanos , Fator 2 Relacionado a NF-E2/fisiologia , Piroptose , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/fisiologia
10.
Bone ; 146: 115886, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33592327

RESUMO

Magnesium (Mg2+), as an essential mineral, supports and sustains the health and activity of the organs of the human body. Despite some clinical evidence on the association of Mg2+ deficiency with muscle regeneration dysfunction and sarcopenia in older-aged individuals, there is no consensus on the action mode and molecular mechanism by which Mg2+ influences aged muscle size and function. Here, we identified the appropriate Mg2+ environment that promotes the myogenic differentiation and myotube hypertrophy in both C2C12 myoblast and primary aged muscle stem cell (MuSC). Through animal experiments, we demonstrated that Mg2+ supplementation in aged mice significantly promotes muscle regeneration and conserves muscle mass and strength. Mechanistically, Mg2+ stimulation activated the mammalian target of rapamycin (mTOR) signalling, inducing the myogenic differentiation and protein synthesis, which consequently offers protections against the age-related decline in muscle regenerative potential and muscle mass. These findings collectively provide a promising therapeutic strategy for MuSC dysfunction and sarcopenia through Mg2+ supplementation in the elderly.


Assuntos
Magnésio , Desenvolvimento Muscular , Animais , Diferenciação Celular , Suplementos Nutricionais , Magnésio/farmacologia , Camundongos , Músculo Esquelético , Serina-Treonina Quinases TOR
11.
Nanoscale ; 12(44): 22541-22550, 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33150907

RESUMO

The precise control over the geometric and electronic structures of active materials on flexible substrates is of great importance to address the current challenges in optimizing and developing high-performance flexible devices for energy conversion and storage. In this work, an addressable surface was demonstrated to engineer structurally controllable active nanomaterials for electrocatalytic hydrogen evolution. The nanostructures of WS2/MOF/metal hydroxide/oxide with different formation energy barriers electrodes could be tuned by modifying the ratio of O/C and the concentration of carbon defects at the surface of carbon cloth. The morphological structure of the vertical WS2 nanosheets that are favorable to electrocatalysis was found to be highly related to the addressable surface of carbon cloth though heterogeneous nucleation and the interactions between the monomers and surface functional groups. Moreover, the electronic structure of WS2 was further modified with N doping (N-WS2) to deliver an addressable surface for the reaction species involved in the electrocatalytic hydrogen evolution reaction (HER), and the resultant N-WS2 exhibited enhanced HER activity compared with the original WS2. The systematic experimental research and electronic-structure density functional theory (DFT) calculations demonstrated the interesting features of the N dopant: (i) the strong hybridization of the p orbital of dopant N with d orbital of W and p orbital of S atoms (W d-S p-N p hybridization) close to the Fermi level can disperse the conducting charges, thus leading to an improved conductivity across the basal plane of WS2 nanosheets; (ii) the local electron transfer from W to N atoms provides the local charge, thus promoting the H adsorption process in the HER for N-WS2. Our research can be expected to offer new perspectives in the precise construction of highly reactive nanostructures toward high-efficiency and highly stable flexible devices for energy conversion and storage.

12.
Nanoscale ; 11(12): 5240-5246, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30864599

RESUMO

Complex nanostructures with high compositional and structural tailorability are highly desired in order to meet the material needs in the rapid development of nanoscience and nanotechnology. Therefore, the synthetic technique is of essential importance but currently still suffers from many challenges. Herein, we elaborately explore and demonstrate the flexibility of the anisotropic metallo-organic compound (dihafnium dichloride, Cp2HfCl2) for the fabrication of inorganic architectures by mimicking the assembly behaviors in biomolecules. The open and discrete architectures of mesoporous HfO2 nanoframes were constructed via the self-assembly of precursor with acetone as solvent and ammonia as the basic source, but without any addition of auxiliary organic molecules, like surfactants, DAN or peptides. In addition, the nanostructures (hollow spheres, solid spheres, yolk-shells, aggregations and defect-rich nanoparticles) of HfO2 assemblies can be well manipulated by simply modulating the synthesis parameters. The marked difference in the chemical bonds by the different ligands resulted in discrepant hydrolysis and then specific directional bonds for the diversity of the resultant HfO2 assemblies. Interestingly, the HfO2 nanoframe exhibits enhanced piezoelectricity, and can be used as a microelectrode reactor to trigger the pseudo-electrochemical aniline polymerization reaction by introducing ultrasonic excitation to renew the surface charges. Moreover, as compared with nanoparticle catalysts, the palladium (Pd) loaded nanoframe reactor exhibits obvious enhanced catalytic performance for classical Suzuki coupling, benefiting from the structural advantages of the HfO2 frame. Our findings here can be expected to offer new perspectives to find suitable materials by understanding the analogy between materials chemistry and biomolecule chemistry.

13.
Chem Commun (Camb) ; 55(19): 2781-2784, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30758016

RESUMO

A general method was elaborately developed for the synthesis of pit-rich metal oxide (TiO2, ZrO2 and HfO2) nanocrystals with metallocene dichlorides as precursors. Benefiting from the synergies in numerous pits, Schottky junctions and nitrogen doping, the hybrid nanostructures of pit-rich TiO2 nanocrystals with Ru loading and N doping exhibited enhanced solar water splitting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA