Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Parasitol Parasites Wildl ; 19: 9-17, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35991946

RESUMO

Diplodiscus japonicus and Diplodiscus mehari (Trematoda: Diplodiscidae) are two important parasites in wood frogs, which have large infection rates and essential importance of ecology, economy and society. In this study, the complete mitochondrial (mt) genomes of D. japonicus and D. mehari were sequenced, then compared with other related trematodes in the superfamily Paramphistomoidea. The complete circular mt sequence of D. japonicus and D. mehari were 14,210 bp and 14,179 bp in length, respectively. Both mt genomes comprised 36 functional subunits, consisting of 12 protein-coding genes (PCGs), two ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes, and one non-coding region. The mt genes of D. japonicus and D. mehari were transcribed in the same direction, and the gene arrangements were identical to those of Paramphistomoidea trematodes. In the 12 PCGs, GTG was the most common initiation codon, whereas TAG was the most common termination codon. All tRNAs had a typical cloverleaf structure except tRNA Ser1. A comparison with related Paramphistomoidea trematode mt genomes suggested that the cox1 gene of D. mehari was the longest in these trematodes. Phylogenetic analyses revealed that Paramphistomoidea trematodes formed a monophyletic branch, Paramphistomidae and Gastrothylacidae were more closely related than Diplodiscidae. And the further analysis with Pronocephalata branch found that the flukes parasitic in amphibians (frogs) formed one group, and the flukes from ruminants (cattle, sheep, ect) formed another group. Our study demonstrated the importance of sequencing mt genomes of D. japonicus and D. mehari, which will provide significant molecular resources for further studies of Paramphistomoidea taxonomy, population genetics and systematics.

2.
Int J Parasitol Parasites Wildl ; 17: 35-42, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34976723

RESUMO

Tetrameres grusi is a significant parasitic nematode of cranes that is classified into suborder Spirurina. However, for more than a century, this classification has been controversial. Mitochondrial genomes are valuable resources for parasite taxonomy, population genetics and systematics studies. Here, the mitochondrial genome of T. grusi was determined and subsequently compared with those from Spirurina species using concatenated datasets of amino acid sequences predicted from mitochondrial protein-coding genes. The complete mitochondrial genome of T. grusi is circular with 13,709 bp, and it contains 12 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes and one non-coding region. All of the protein-coding genes are transcribed in the same direction. There were 18 intergenic spacers of 1-44 bp, and six locations with gene overlaps, ranging from 1 bp to 28 bp, in the mitochondrial genome of T. grusi. The AT content of this mitochondrial genome was 71.56%. This was similar to mitochondrial genomes of other Spirurina species, which also exhibited strong AT content bias, not only in the nucleotide composition but also in codon usage. The sequenced mitogenomes of the 25 Spirurina nematodes showed three classes of gene arrangements based on the 12 protein-coding genes, and the gene arrangement of the T. grusi mitochondrial genome belonged to the Class I. Phylogenetic analyses using mitochondrial genomes of 25 Spirurina nematodes revealed that T. grusi (Habronematoidea) was closer to Gongylonema pulchrum (Spiruroidea) than Spirocerca lupi (Thelazioidea). The availability of the complete mitochondrial genome sequence of T. grusi provides new and useful genetic markers for further studies on Spirurina nematodes.

3.
Vet Parasitol ; 290: 109359, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33516119

RESUMO

Coronocyclus labiatus and Cylicodontophorus bicoronatus are two significant horse parasitic nematodes which are classified into subfamily Cyathostominae, family Strongylidae, however, the classification of these nematodes has been controversial for more than a century. Mitochondrial (mt) genomes are considered valuable sources for parasite taxonomy, population genetics, and systematics studies. In the present study, the mt genomes of Co. labiatus and Cd. bicoronatus (type species) were determined and subsequently compared with those from closely related species by phylogenetic analysis based on concatenated datasets of amino acid sequences predicted from mt protein-coding genes. The complete mt genomes of Co. labiatus and Cd. bicoronatus were circular with 13,827 bp and 13,753 bp in size, respectively. Both mt genomes consisted of a total of 12 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes and two non-coding regions. All protein coding genes were transcribed in the same direction, and the gene order in both mt genomes belonged to the gene arrangement type 3 (GA3). There were 19 intergenic spacers with 1 bp to 35 bp and one overlap with 4 bp in mt genome of Co. labiatus, and 22 intergenic spacers with 1-29 bp in size but no overlap in the mt genome of Cd. bicoronatus. The A + T content of Co. labiatus and Cd. bicoronatus mt genomes were 75.87 % and 75.16 %, respectively. Similar to mt genones of other Strongylidae species published in GenBank, they also exhibited a strong A + T bias not only in the nucleotide composition but also in codon usage. Comparative analyses of mt genomes nucleotide sequence showed that mt genomes of Co. labiatus and Cd. bicoronatus had higher identities to that of Cylicostephanus goldi (90.3 % and 86.9 %, respectively), followed by those of two Cyathostomum species (89.9∼90.0 %; 86.4 %), respectively. Phylogenetic analyses using mt genomes of 26 Strongyloidea nematodes revealed that Co. labiatus was closely related to Cyathostomum species, and Cd. bicoronatus formed a distinct branch with Cyathostominae species, which was closer to Triodontophorus than Poteriostomum imparidentatum. We concluded Coronocyclus might be closely related with Cyathostomum but represent a distinct genus based on comparative mt genome sequences and phylogenetic analyses. The availability of complete mt genome sequences of Co. labiatus and Cd. bicoronatus provides new and useful genetic markers for further studies on Strongylidae nematodes.


Assuntos
Genoma Helmíntico , Genoma Mitocondrial , Nematoides/genética , Filogenia , Animais , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Especificidade da Espécie
4.
Infect Genet Evol ; 84: 104487, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32745810

RESUMO

Cyathostomins are one kind of the most important parasites in equids. Cylicostephanus minutus is a member of the subfamily Cyathostominae. In the present study, we determined the complete mitochondrial (mt) genomes from four Cs. minutus isolates and reconstructed the phylogenetic relationship of Strongylidae to test the hypothesis that Cs. minutus represents a species complex. The complete mt genome sequences of Cs. minutus were 13,772-13,822 bp in length, and contained 36 genes (12 protein coding genes, 22 tRNA genes, two rRNA genes), and two non-coding regions (NCRs). The intraspecific identity of nucleotide sequences and amino acid sequences in Cs. minutus (1-4) were 89.3-97.9% and 97.0-98.8%, respectively. Two operational taxonomic units (OTUs) were determined based on the mt genome sequences, OTU 2 (Csm 1 and Csm 2) and OTU 3 (Csm 3 and Csm 4). Sequence analysis showed the divergence between OTU 2 and OTU 3 was 8.9-10.7%. Pairwise comparisons of 12 protein coding genes between OTU 2 and OTU 3 showed a difference of 3.0-13.3% at the nucleotide level and 0-6.7% at the amino acid level. Phylogenetic analysis showed the separation of Cs. minutus isolates from the same host into different distinct clades based on mt genomes. Comparisons of partial mt cox1, nad5, and cytb and ITS2 sequences from 20 Cs. minutus isolates from the same host and the same geographical location with other Cs. minutus sequences available in GenBank revealed significant nucleotide differences. Phylogenetic analysis showed a separation of Cs. minutus into three distinct clades. Thus, the comparative and phylogenetic analyses of mtDNA datasets indicated that Cs. minutus represents a complex of at least three species. Our results have further confirmed the existence of a cryptic Cs. minutus species, and provides a reference for the taxonomical, population genetics, and systematics studies of other cyathostomin species.


Assuntos
DNA Mitocondrial/genética , Variação Genética , Genoma Mitocondrial , Strongyloidea/classificação , Strongyloidea/genética , Animais , DNA de Helmintos/genética , Filogenia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA