Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Int J Biol Macromol ; 280(Pt 2): 135949, 2024 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-39317279

RESUMO

Previous studies on the modification of fast-growing wood have extensively examined the effects of density and lignin content on the strength and high-temperature properties of modified wood. However, a comprehensive quantitative analysis of their effects on high-temperature performance remains insufficient. To address this knowledge gap, we applied alkali treatment and compression densification to fast-growing poplar, resulting in modified specimens with varying densities and lignin levels. The quantitative effects of density and lignin content on high-temperature properties were meticulously evaluated. Chemical changes were analyzed using Fourier transform infrared spectroscopy (FT-IR), while the mechanical and high-temperature properties were comprehensively assessed. Delignification was found to be positively correlated with treatment duration, with hemicellulose degradation also detected via FT-IR analysis. Significant enhancements were recorded in flexural strength, tensile strength, and modulus of elasticity, accompanied by improvements in ductility ratio and compressive strength. The modified poplar wood exhibited increased thermal stability at elevated temperatures. Furthermore, density and lignin content were identified as significant factors affecting high-temperature performance, establishing minimum density thresholds for various lignin contents in modified poplar wood to ensure optimal performance. This study enhances to the understanding of the intricate relationships among wood properties, modification techniques, and high-temperature performance.

2.
J Agric Food Chem ; 72(38): 21102-21111, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39269321

RESUMO

Five new sorbicillinoid derivatives, including (±)-aspersorbicillin A [(±)-1], a pair of enantiomers at C-9, and aspersorbicillins B-D (2-4), together with two known analogs (5 and 6) were isolated from the endophytic fungus Aspergillus aculeatus TE-65L. Their structures including absolute configurations were determined by detailed spectroscopic analyses and electronic circular dichroism calculations. The herbicidal activity of sorbicillinoids on the germ and radicle elongation of various weed types was reported for the first time. Compound 1 displayed significant herbicidal activity against Eleusine indica germ elongation (IC50 = 28.8 µg/mL), while compound 6 inhibited radicle elongation (IC50 = 25.6 µg/mL). Both were stronger than those of glyphosate (66.2 and 30.9 µg/mL, respectively). Further transcriptomic and LC-MS/MS metabolomic analysis indicated that 6 induced the transcriptional expressions of genes related to the lignin biosynthetic pathway, resulting in lignin accumulation. Transmission electron microscopy confirmed the cell wall thickening of seeds treated with 6, suggesting weed growth inhibition. This study reveals new lead compounds for fabricating natural herbicides and expands the agricultural use of sorbicillinoid analogs.


Assuntos
Aspergillus , Herbicidas , Lignina , Aspergillus/metabolismo , Aspergillus/genética , Aspergillus/efeitos dos fármacos , Aspergillus/química , Herbicidas/farmacologia , Herbicidas/química , Herbicidas/metabolismo , Lignina/química , Lignina/metabolismo , Lignina/farmacologia , Estrutura Molecular , Sementes/química , Sementes/metabolismo , Sementes/microbiologia
3.
Food Chem ; 460(Pt 3): 140670, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39106747

RESUMO

Anthocyanins are natural flavonoids with a high antioxidant power and many associated health benefits, but most rice produce little amounts of these compounds. In this study, 141 MYB transcription factors in 15 chromosomes, including the nucleus-localised ZlMYB1 (Zla03G003370) and ZlMYB2 (Zla15G015220), were discovered in Zizania latifolia. Overexpression of ZlMYB1 or ZlMYB2 in rice seeds induced black pericarps, and flavonoid content, antioxidant capacity, and α-glucosidase and tyrosinase inhibition effects significantly increased compared to those in the control seeds. ZlMYB1 and ZlMYB2 overexpression induced the upregulation of 764 and 279 genes, respectively, and the upregulation of 162 and 157 flavonoids, respectively, linked to a black pericarp phenotype. The expression of flavonoid 3'-hydroxylase and UDP-glycose flavonoid glycosyltransferase, as well as the activities of these enzymes, increased significantly in response to ZlMYB1 or ZlMYB2 overexpression. This study systematically confirmed that the overexpression of ZlMYB1 and ZlMYB2 promotes flavonoid biosynthesis (especially of anthocyanins) in rice.


Assuntos
Antioxidantes , Flavonoides , Monofenol Mono-Oxigenase , Oryza , Proteínas de Plantas , Sementes , alfa-Glucosidases , Sementes/química , Sementes/genética , Sementes/metabolismo , Sementes/enzimologia , Oryza/genética , Oryza/química , Oryza/metabolismo , Oryza/enzimologia , Flavonoides/metabolismo , Flavonoides/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , alfa-Glucosidases/genética , alfa-Glucosidases/metabolismo , alfa-Glucosidases/química , Antioxidantes/metabolismo , Antioxidantes/química , Monofenol Mono-Oxigenase/metabolismo , Monofenol Mono-Oxigenase/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/química , Regulação da Expressão Gênica de Plantas , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/enzimologia
4.
Bioresour Technol ; 412: 131370, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39209229

RESUMO

The production of alternative proteins is of great significance in the mitigation of food problems. This study proposes an integrated approach including protein extraction, enzymatic hydrolysis, and fermentation to produce both plant proteins and single-cell proteins as alternative proteins from tobacco leaves, a highly-abundant and protein-rich agricultural waste. Alkaline extraction of proteins before polysaccharide hydrolysis was found to be preferable for increasing the yields of plant proteins and mono-sugars. The combined use of pectinase-rich enzymes from Aspergillus brunneoviolaceus and hemicellulase-rich enzymes from Penicillium oxalicum achieved the release of 80.7 % of the sugars after 72 h. Cutaneotrichosporon cutaneum could simultaneously utilize multiple sugars, including galacturonic acid, in the enzymatic hydrolysate to produce single-cell proteins. Via this approach, 43.54 g crude proteins of high protein contents and rich in essential amino acids can be produced from 100.00 g waste tobacco leaves, providing a promising strategy for its valorization.


Assuntos
Nicotiana , Pectinas , Folhas de Planta , Proteínas de Plantas , Nicotiana/metabolismo , Pectinas/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/química , Proteínas de Plantas/metabolismo , Hidrólise , Poligalacturonase/metabolismo , Fermentação , Glicosídeo Hidrolases/metabolismo , Aspergillus/metabolismo , Álcalis , Penicillium/metabolismo , Proteínas Fúngicas/metabolismo , Resíduos , Proteínas Alimentares
5.
Front Plant Sci ; 15: 1341324, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38872887

RESUMO

Tobacco cembranoids, known for their anti-insect and antifungal properties, were shown to be mainly present on the surface of leaves and flowers, being biosynthesized by their trichomes. It remains unclear whether they could be biosynthesized in other organs without trichomes. Cembratrien-ol synthases (CBTSs) catalyze the conversion of GGPP to CBT-ols and thus play an important role in cembranoid biosynthesis. This study identified the CBTS family genes in tobacco and examined their spatiotemporal expression patterns. The CBTS genes showed diverse expression patterns in tobacco organs, with the majority highly expressed in leaves and a few highly expressed in flowers. The expression of CBTS genes were also correlated with the development of tobacco plants, and most of them showed the highest expression level at the budding stage. Furthermore, their expression is mediated by the JA (jasmonate) signaling in all tobacco organs. Several CBTS genes were found to be highly expressed in tobacco roots that have no trichomes, which prompted us to determine the cembranoid production in roots and other organs. GC-MS and UPLC assays revealed that cembranoids were produced in all tobacco organs, which was supported by the bioactivity assay results that almost all these CBTS enzymes could catalyze CBT-ol biosyntheis in yeast, and that the content ratio of CBT-ols and CBT-diols in tobacco roots was different to that in leaves. This work sheds insights into the expression profiles of tobacco CBTS genes and provides a feasibility to engineer tobacco roots for industrial production of cembranoids.

6.
Arch Microbiol ; 206(7): 291, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849576

RESUMO

Biomass-degrading enzymes produced by microorganisms have a great potential in the processing of agricultural wastes. In order to produce suitable biomass-degrading enzymes for releasing sugars and aroma compounds from tobacco scraps, the feasibility of directly using the scraps as a carbon source for enzyme production was investigated in this study. By comparative studies of ten fungal strains isolated from tobacco leaves, Aspergillus brunneoviolaceus Ab-10 was found to produce an efficient enzyme mixture for the saccharification of tobacco scraps. Proteomic analysis identified a set of plant biomass-degrading enzymes in the enzyme mixture, including amylases, hemicellulases, cellulases and pectinases. At a substrate concentration of 100 g/L and enzyme dosage of 4 mg/g, glucose of 17.6 g/L was produced from tobacco scraps using the crude enzyme produced by A. brunneoviolaceus Ab-10. In addition, the contents of 23 volatile molecules, including the aroma compounds 4-ketoisophorone and benzyl alcohol, were significantly increased after the enzymatic treatment. The results provide a strategy for valorization of tobacco waste by integrating the production of biomass-degrading enzymes into the tobacco scrap processing system.


Assuntos
Aspergillus , Biomassa , Nicotiana , Nicotiana/microbiologia , Nicotiana/metabolismo , Aspergillus/enzimologia , Aspergillus/metabolismo , Açúcares/metabolismo , Odorantes/análise , Proteínas Fúngicas/metabolismo , Glicosídeo Hidrolases/metabolismo , Amilases/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Folhas de Planta/microbiologia , Celulases/metabolismo , Poligalacturonase/metabolismo
7.
J Fungi (Basel) ; 10(5)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38786696

RESUMO

Arbuscular mycorrhizal fungi play a key role in mediating soil-plant relationships within karst ecosystems. Sophora japonica, a medicinal plant with anti-inflammatory and antitumor properties, is widely cultivated in karst areas of Guangxi, China. We considered limestone, dolomite, and sandstone at altitudes ranging from 100 to 800 m and employed Illumina sequencing to evaluate AMF diversity and identify the factors driving S. japonica rhizosphere AMF community changes. We showed that the increase in altitude increased S. japonica AMF colonization and the Shannon index. The colonization of limestone plots was higher than that of other lithology. In total, 3,096,236 sequences and 5767 OTUs were identified in S. japonica rhizosphere soil. Among these, 270 OTUs were defined at the genus level and divided into 7 genera and 35 species. Moreover, available nitrogen, soil organic matter, and available calcium content had a coupling effect and positive influence on AMF colonization and Shannon and Chao1 indices. Conversely, available phosphorus, available potassium, and available magnesium negatively affected AMF Shannon and Chao1 indices. Lithology, altitude, pH, and available phosphorus are important factors that affect the dynamics of AMF in the S. japonica rhizosphere.

8.
Phytochemistry ; 223: 114117, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38697243

RESUMO

Cembranoids and labdanes are two important types of diterpenes in tobacco (Nicotiana genus) that are predominantly found in the leaf and flower glandular trichome secretions. This is the first systematic review of the biosynthesis, chemical structures, bioactivities, and utilisation values of cembranoid and labdane diterpenes in tobacco. A total of 131 natural cembranoid diterpenes have been reported in tobacco since 1962; these were summarised and classified according to their chemical structure characteristics as isopropyl cembranoids (1-88), seco-cembranoids (89-103), chain cembranoids (104-123), and polycyclic cembranoids (124-131). Forty natural labdane diterpenes reported since 1961 were also summarised and divided into epoxy side chain labdanes (132-150) and epoxy-free side chain labdanes (151-171). Tobacco cembranoid and labdane diterpenes are both formed via the methylerythritol 4-phosphate pathway and are synthesised from geranylgeranyl diphosphate. Their biosynthetic pathways and the four key enzymes (cembratrienol synthase, cytochrome P450 hydroxylase, copalyl diphosphate synthase, and Z-abienol cyclase) that affect their biosynthesis have been described in detail. A systematic summary of the bioactivity and utilisation values of the cembranoid and labdane diterpenes is also provided. The agricultural bioactivities associated with cembranoid and labdane diterpenes include antimicrobial and insecticidal activities as well as induced resistance, while the medical bioactivities include cytotoxic and neuroprotective activities. Further research into the cembranoid and labdane diterpenes will help to promote their development and utilisation as plant-derived pesticides and medicines.


Assuntos
Diterpenos , Nicotiana , Tricomas , Diterpenos/química , Diterpenos/farmacologia , Diterpenos/metabolismo , Tricomas/química , Tricomas/metabolismo , Nicotiana/química , Estrutura Molecular , Humanos
9.
Front Bioeng Biotechnol ; 12: 1358246, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38419725

RESUMO

With the rapid development of synthetic biology, recombinant human collagen has emerged as a cutting-edge biological material globally. Its innovative applications in the fields of material science and medicine have opened new horizons in biomedical research. Recombinant human collagen stands out as a highly promising biomaterial, playing a pivotal role in crucial areas such as wound healing, stroma regeneration, and orthopedics. However, realizing its full potential by efficiently delivering it for optimal therapeutic outcomes remains a formidable challenge. This review provides a comprehensive overview of the applications of recombinant human collagen in biomedical systems, focusing on resolving this crucial issue. Additionally, it encompasses the exploration of 3D printing technologies incorporating recombinant collagen to address some urgent clinical challenges in regenerative repair in the future. The primary aim of this review also is to spotlight the advancements in the realm of biomaterials utilizing recombinant collagen, with the intention of fostering additional innovation and making significant contributions to the enhancement of regenerative biomaterials, therapeutic methodologies, and overall patient outcomes.

10.
Int J Mol Sci ; 24(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37569602

RESUMO

Bacterial wilt negatively impacts the yield and quality of tomatoes. cis-Abienol, a labdane diterpenoid abundantly produced in the trichome secretion of Nicotiana spp., can induce bacterial wilt resistance in plants; however, study on its practical application and acting mechanism is very limited. This study established the application conditions of cis-abienol for inducing tomato bacterial wilt resistance by pot-inoculation experiments and investigated the underlying mechanism by determining the physio-biochemical indexes and transcriptomic changes. The results showed that applying cis-abienol to the roots was the most effective approach for inducing tomato bacterial wilt resistance. The optimal concentration was 60 µg/mL, and 2-3 consecutive applications with 3-6 days intervals were sufficient to induce the bacterial wilt resistance of tomato plants. cis-Abienol could enhance the antioxidant enzyme activity and stimulate the defensive signal transduction in tomato roots, leading to the upregulation of genes involved in the mitogen-activated protein kinase cascade. It also upregulated the expression of JAZ genes and increased the content of jasmonic acid (JA) and salicylic acid (SA), which control the expression of flavonoid biosynthetic genes and the content of phytoalexins in tomato roots. cis-Abienol-induced resistance mainly depends on the JA signalling pathway, and the SA signalling pathway is also involved in this process. This study established the feasibility of applying the plant-derived terpenoid cis-abienol to induce plant bacterial wilt resistance, which is of great value for developing eco-friendly bactericides.


Assuntos
Diterpenos , Solanum lycopersicum , Nicotiana/genética , Nicotiana/metabolismo , Solanum lycopersicum/genética , Transdução de Sinais , Diterpenos/farmacologia , Ácido Salicílico/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas
11.
Molecules ; 28(15)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37570785

RESUMO

The photocatalytic degradation of formaldehyde by graphite-like C3N4 is one of the most attractive and environmentally friendly strategies to address the significant threat to human health posed by indoor air pollutants. Despite its potential, this degradation process still faces issues with suboptimal efficiency, which may be attributed to the rapid recombination of photogenerated excitons and the broad band gap. As a proof of concept, a series of graphite-like C3N4@C60 composites combining graphite-like C3N4 and C60 was developed via an in situ generation strategy. The obtained graphite-like C3N4@C60 composites exhibited a remarkable increase in the photocatalytic degradation efficiency of formaldehyde, of up to 99%, under visible light irradiation, outperforming pure graphite-like C3N4 and C60. This may be due to the composites' enhanced built-in electric field. Additionally, the proposed composites maintained a formaldehyde removal efficiency of 84% even after six cycles, highlighting their potential for indoor air purification and paving the way for the development of efficient photocatalysts.

12.
Autoimmunity ; 56(1): 2250095, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37621179

RESUMO

Lupus nephritis (LN) is a major cause death in patients with systemic lupus erythematosus. We aimed to find the differentially expressed genes (DEGs) in LN and confirm the regulatory mechanism on LN. The mouse model of LN was constructed by subcutaneous injection of pristane. RNA-seq screened 392 up-regulated and 447 down-regulated DEGs in LN mouse model, and KEGG analysis found that the top 20 DEGs were enriched in arachidonic acid metabolism, tryptophan metabolism, etc. The hub genes, Kynu, Spidr, Gbp3, Cbr1, Cyp4b1, and Cndp2 were identified, in which Gbp3 was selected for following study. Afterwards, the function of Gbp3 on the proliferation, inflammation, and pyroptosis of LN was verified by CCK-8, ELISA, and WB in vitro. The results demonstrated that si-Gbp3 promoted cell proliferation and inhibited the levels of inflammatory factors (IL-1ß, TNF-α and IL-8) and pyroptosis-related proteins (GSDMD, Caspase-1 and NLRP3) in a cell model of LN. In constrast, Gbp3 overexpression played an opposite role. In summary, Gbp3 promoted the progression of LN via inhibiting cell proliferation and facilitating inflammation and pyroptosis.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Animais , Camundongos , Nefrite Lúpica/genética , Piroptose , Inflamação/genética , Proliferação de Células , Modelos Animais de Doenças , Proteínas de Ligação ao GTP
13.
Front Plant Sci ; 14: 1183739, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324716

RESUMO

Wild rice (Zizania spp.), an aquatic grass belonging to the subfamily Gramineae, has a high economic value. Zizania provides food (such as grains and vegetables), a habitat for wild animals, and paper-making pulps, possesses certain medicinal values, and helps control water eutrophication. Zizania is an ideal resource for expanding and enriching a rice breeding gene bank to naturally preserve valuable characteristics lost during domestication. With the Z. latifolia and Z. palustris genomes completely sequenced, fundamental achievements have been made toward understanding the origin and domestication, as well as the genetic basis of important agronomic traits of this genus, substantially accelerating the domestication of this wild plant. The present review summarizes the research results on the edible history, economic value, domestication, breeding, omics research, and important genes of Z. latifolia and Z. palustris over the past decades. These findings broaden the collective understanding of Zizania domestication and breeding, furthering human domestication, improvement, and long-term sustainability of wild plant cultivation.

14.
Sci Total Environ ; 884: 163741, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37120025

RESUMO

Wood-based panels provide efficient alternatives to materials such as plastics derived from traditional petroleum sources and thereby help to mitigate greenhouse gas emissions. Unfortunately, using indoor manufactured panel products also results in significant emissions of volatile organic compounds including olefins, aromatic and ester compounds, which negatively affect human health. This paper highlights recent developments and notable achievements in the field of indoor hazardous air treatment technologies to guide future research toward environmentally friendly and economically feasible directions that may have a significant impact on the improvement of human settlements. Summarizing and synthesizing the principles, advantages, and limitations of different technologies can assist policymakers and engineers in identifying the most appropriate technology for a particular air pollution control program based on criteria such as cost-effectiveness, efficiency, and environmental impact. In addition, insights into the development of indoor air pollution control technologies are provided and potential areas for innovation, improvement of existing technologies, and development of new technologies are identified. Finally, the authors also hope that this sub-paper will raise public awareness of indoor air pollution issues and promote a better understanding of the importance of indoor air pollution control technologies for public health, environmental protection, and sustainable development.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Petróleo , Compostos Orgânicos Voláteis , Humanos , Compostos Orgânicos Voláteis/análise , Madeira/química , Poluição do Ar em Ambientes Fechados/prevenção & controle , Poluição do Ar em Ambientes Fechados/análise , Meio Ambiente , Poluentes Atmosféricos/análise
15.
ACS Appl Mater Interfaces ; 15(3): 4505-4515, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36629909

RESUMO

The preparation of biocomposites from renewable and sustainable forestry residues is an effective method to significantly reduce the environmental pollution caused by synthetic materials such as plastics and synthetic fibers. This study is aimed at developing a clean process for the large-scale production of high-performance green biocomposites without involving any chemical adhesive. Adhesive-free biocomposites with superior mechanical properties were prepared using HCl ball milling pretreatment and in situ synthesis. The nano-Fe3O4 was uniformly dispersed in the cellulose matrix, and when the matrix was subjected to external forces, the stress concentration effect around the particles absorbed energy, thus effectively improving the mechanical strength of the matrix. The flexural strength and tensile strength of BWP(Fe3O4) samples were increased by 159.04 and 175.34%, compared to that of regular wood powder control samples. The lignin melts under high temperature and pressure and then forms a carbonized layer on the surface of the biocomposites during the cooling process, which prevents the rapid penetration of water from the surface and also gives the biocomposites good thermal stability. The results of this research can avoid the harmful volatiles generated by chemical adhesive than that of the traditional fiberboard process and effectively replace petroleum-based synthetic materials prepared using the addition of various chemical additives, making it conform to the concept of environmental protection and sustainability.

16.
Int J Mol Sci ; 23(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36555582

RESUMO

The loss of seed shattering is an important event in crop domestication, and elucidating the genetic mechanisms underlying seed shattering can help reduce yield loss during crop production. This study is the first to systematically identify and analyse the BELL family of transcription factor-encoding genes in Chinese wild rice (Zizania latifolia). ZlqSH1a (Zla04G033720) and ZlqSH1b (Zla02G027130) were identified as key candidate genes involved in seed shattering in Z. latifolia. These genes were involved in regulating the development of the abscission layer (AL) and were located in the nucleus of the cell. Over-expression of ZlqSH1a and ZlqSH1b resulted in a complete AL between the grain and pedicel and significantly enhanced seed shattering after grain maturation in rice. Transcriptome sequencing revealed that 172 genes were differentially expressed between the wild type (WT) and the two transgenic (ZlqSH1a and ZlqSH1b over-expressing) plants. Three of the differentially expressed genes related to seed shattering were validated using qRT-PCR analysis. These results indicate that ZlqSH1a and ZlqSH1b are involved in AL development in rice grains, thereby regulating seed shattering. Our results could facilitate the genetic improvement of seed-shattering behaviour in Z. latifolia and other cereal crops.


Assuntos
Oryza , Domesticação , Genes de Plantas , Sementes , Grão Comestível/genética
17.
Food Res Int ; 162(Pt B): 112082, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36461331

RESUMO

Chinese wild rice (Zizania latifolia) is rich in flavonoids and the characteristic colour of its pericarp is attributed to the flavonoids. In this study, the molecular basis of the colour change in the pericarp of Chinese wild rice was studied using metabolomics and proteomics. Whole seeds in three developmental stages (10, 20, and 30 days after flowering) were characterised based on phenolic contents, free amino acids (FAAs), and the expression level and activities of enzymes critical in flavonoid biosynthesis. The total phenolic and proanthocyanidin contents of Chinese wild rice increased gradually, whereas total flavonoid and FAA contents decreased during seed development. Metabolomic analysis revealed gradual upward trends for 57 flavonoids (sub classes 1, 3, and 10) related to colour change in the pericarp. Proteomic analysis showed that the phenylpropanoid biosynthesis metabolic pathway was enriched with differentially expressed proteins and was associated with flavonoid biosynthesis. Proteomic data suggested that leucoanthocyanidin reductase and WD40 repeat protein may be involved in flavonoid biosynthesis in Chinese wild rice, which was also verified by real-time quantitative PCR. Our results provide new insights into the understanding of the colour formation in the pericarp of Chinese wild rice.


Assuntos
Oryza , China , Cor , Flavonoides , Oryza/genética , Fenóis , Poaceae , Proteômica
18.
ACS Appl Mater Interfaces ; 14(41): 47176-47187, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36214472

RESUMO

Traditional wood-based panels are usually made from large-diameter trees and rely on adhesives for compactness, which negatively impacts the environment and human health. However, the widely distributed small-diameter shrubs are good raw materials for wood-based panels with abundant fibers, but are often under-exploited. This research reports the preparation of self-bonding biocomposites from Buxus sinica by an innovative combined approach of extraction, alkali treatment, and hot molding. The resulted biocomposites show better mechanical properties in which the flexural modulus (7.79 GPa) and the tensile modulus (4.33 GPa) were 5 times and 1.7 times higher than the conventional fiberboard, respectively, and also demonstrated better hydrophobicity than fiberboard, which could be due to the layer of lignin that formed on its surface preventing the infiltration of water. To sum up, the biocomposites prepared from small-diameter shrubs meet the requirement of the furniture and architectural decoration materials, suggesting that the proposed approach can be used to produce high-performance biocomposites.


Assuntos
Buxus , Lignina , Humanos , Decoração de Interiores e Mobiliário , Relatório de Pesquisa , Álcalis , Água
19.
Carbohydr Polym ; 297: 120025, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36184173

RESUMO

Pectin is a major component in many agricultural feedstocks. Despite the wide use in industrial production of cellulases and hemicellulases, the fungus Trichoderma reesei lacks a complete enzyme set for pectin degradation. In this study, three representative pectinolytic enzymes were expressed and screened for their abilities to improve the efficiency of T. reesei enzymes on the conversion of different agricultural residues. By replacing 5 % of the T. reesei proteins, endopolygalacturonase and pectin lyase remarkably increased the release of sugars from inferior tobacco leaves. In contrast, pectin methylesterase showed the strongest improving effect (by 31.1 %) on the hydrolysis of beetroot residue. The pectin in beetroot residue was only mildly degraded with the supplementation of pectin methylesterase, which allowed the extraction of pectin keeping the original emulsifying activity with a 51.1 % higher yield. The results provide a basis for precise optimization of lignocellulolytic enzyme systems for targeted valorization of pectin-rich agricultural residues.


Assuntos
Celulase , Celulases , Trichoderma , Biomassa , Celulase/metabolismo , Celulases/metabolismo , Hidrólise , Pectinas/metabolismo , Poligalacturonase/metabolismo , Açúcares/metabolismo
20.
Front Microbiol ; 13: 1026680, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36312940

RESUMO

Tobacco contains a large amount of bioactive ingredients which can be used as source of feed. The objective of this study was to evaluate the effects of dietary addition of low-nicotine tobacco (LNT) on the growth performance, blood status, cecum microbiota and metabolite composition of meat rabbits. A total of 80 Kangda meat rabbits of similar weight were assigned randomly as four groups, and three of them were supplemented with 5%, 10%, and 20% LNT, respectively, with the other one fed with basal diet as control group. Each experiment group with 20 rabbits was raised in a single cage. The experiments lasted for 40 days with a predictive period of 7 days. The results revealed that LNT supplementation had no significant effect on the growth performance, but increased the half carcass weight compared with control group. Dietary supplemention of LNT decreased the triglycerides and cholesterol content in rabbit serum, and significantly increased the plasma concentration of lymphocytes (LYM), monocytes, eosinophils, hemoglobin HGB and red blood cells. In addition, LNT supplementation significantly changed the microbial diversity and richness, and metagenomic analysis showed that LNT supplementation significantly increased Eubacterium_siraeum_group, Alistipes, Monoglobus and Marvinbryantia at genus level. Moreover, LC-MS data analysis identified a total of 308 metabolites that markedly differed after LNT addition, with 190 significantly upregulated metabolites and 118 significantly downregulated metabolites. Furthermore, the correlation analysis showed that there was a significant correlation between the microbial difference and the rabbit growth performance. Overall, these findings provide theoretical basis and data support for the application of LNT in rabbits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA