Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Plant Physiol ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753366

RESUMO

Sclerotinia disease is one of the most devastating fungal diseases worldwide, as it reduces the yields of many economically important crops. Pathogen-secreted effectors play crucial roles in infection processes. However, key effectors of Ciboria shiraiana, the pathogen primarily responsible for sclerotinia disease in mulberry (Morus spp.), remain poorly understood. In this study, we identified and functionally characterized the effector Cs02526 in C. shiraiana and found that Cs02526 could induce cell deathin a variety of plants. Moreover, Cs02526-induced cell death was mediated by the central immune regulator BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1 (BAK1), dependent on a 67-amino acid fragment. Notably, Cs02526 homologues were widely distributed in hemibiotrophic and necrotrophic phytopathogenic fungi, but the homologues failed to induce cell death in plants. Pre-treatment of plants with recombinant Cs02526 protein enhanced resistance against both C. shiraiana and Sclerotinia sclerotiorum. Furthermore, the pathogenicity of C. shiraiana was diminished upon spraying plants with synthetic dsRNA-Cs02526. In conclusion, our findings highlight the cell death-inducing effector Cs02526 as a potential target for future biological control strategies against plant diseases.

2.
Sci Total Environ ; 927: 172352, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608900

RESUMO

Mulberry cultivation and silkworm rearing hold a prominent position in the agricultural industries of many Asian countries, contributing to economic growth, sustainable development, and cultural heritage preservation. Applying the soil-mulberry-silkworm system (SMSS) to heavy metal (HM)-contaminated areas is significant economically, environmentally, and socially. The ultimate goal of this paper is to review the main research progress of SMSS under HM stress, examining factors affecting its safe utilization and remediation potential for HM-contaminated soils. HM tolerance of mulberry and silkworms relates to their growth stages. Based on the standards for HM contaminants in various mulberry and silkworm products and the bioconcentration factor of HMs at different parts of SMSS, we calculated maximum safe Cd and Pb levels for SMSS application on contaminated lands. Several remediation practices demonstrated mulberry's ability to grow on barren lands, absorb various HMs, while silkworm excreta can adsorb HMs and improve soil fertility. Considering multiple factors influencing HM tolerance and accumulation, we propose a decision model to guide SMSS application in polluted areas. Finally, we discussed the potential of using molecular breeding techniques to screen or develop varieties better suited for HM-contaminated regions. However, actual pollution scenarios are often complex, requiring consideration of multiple factors. More large-scale applications are crucial to enhance the theoretical foundation for applying SMSS in HM pollution risk areas.


Assuntos
Bombyx , Recuperação e Remediação Ambiental , Metais Pesados , Morus , Poluentes do Solo , Metais Pesados/análise , Animais , Poluentes do Solo/análise , Recuperação e Remediação Ambiental/métodos , Solo/química
3.
Insect Sci ; 31(1): 28-46, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37356084

RESUMO

The safety of transgenic technology is a major obstacle in the popularization and use of transgenic silkworms and their products. In sericulture, only the first filial generation (F1 ) hybrid eggs produced by cross-breeding Japanese and Chinese original strains are usually used for the large-scale breeding of silkworms, but this may result in uncontrolled transgene dispersal during the popularization and application of the F1 hybrid transgenic eggs. To address this issue, we developed a safe and efficient strategy using the GAL4/Upstream activating sequence (UAS) system, the FLP/flippase recognition target (FRT) system, and the gonad-specific expression gene promoters (RSHP1p and Nanosp) for the germ cell-specific automatic excision of foreign DNA in the F1 hybrid transgenic silkworms. We established 2 types of activator strains, R1p::GAL4-Gr and Nsp::GAL4-Gr, containing the testis-specific GAL4 gene expression cassettes driven by RSHP1p or Nanosp, respectively, and 1 type of effector strain, UAS::FLP-Rg, containing the UAS-linked FLP gene expression cassette. The FLP recombinase-mediated sperm-specific complete excision of FRT-flanked target DNA in the F1 double-transgenic silkworms resulting from the hybridization of R1p::GAL4-Gr and UAS::FLP-Rg was 100%, whereas the complete excision efficiency resulting from the hybridization of Nsp::GAL4-Gr and UAS::FLP-Rg ranged from 13.73% to 80.3%. Additionally, we identified a gene, sw11114, that is expressed in both testis and ovary of Bombyx mori, and can be used to establish novel gonad-specific expression systems in transgenic silkworms. This strategy has the potential to fundamentally solve the safety issue in the production of F1 transgenic silkworm eggs and provides an important reference for the safety of transgenic technology in other insect species.


Assuntos
Bombyx , Feminino , Animais , Masculino , Bombyx/genética , Proteínas de Fluorescência Verde/genética , Sêmen , Animais Geneticamente Modificados , DNA , Células Germinativas
4.
Front Plant Sci ; 14: 1228902, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37575921

RESUMO

The phytohormone abscisic acid (ABA) is vital in regulating root elongation, seed germination, and abiotic stress responses in plants. Conversely, the mechanisms of ABA in mulberry root growth, seed germination, and abiotic stress responses are poorly understood. Here, we reported that exogenous ABA and drought treatment inhibited the growth of mulberry seedlings but significantly increased the ratio of root/stem. Inhibition of ABA synthesis by fluridone and sodium tungstate resulted in the decrease of root/stem ratio. We also showed that the expression of MaNCED1 in the root was strongly induced by drought and salt stress. Increasing the expression of MaNCED1 in tobacco using overexpression leads to increased root elongation and reduced seed germination. Compared with the wild type, the accumulation of H2O2 and MDA was reduced, while the POD activity and proline content was increased in the transgenic plants after drought and salt treatment. Further studies revealed increased resistance to drought and salt stress in MaNCED1 overexpressed tobaccos. Meanwhile, the auxin and ethylene signal pathway-related gene expression levels increased in MaNCED1 overexpressed tobaccos. This study demonstrated the roles of mulberry MaNCED1 in regulating plant development and abiotic stress responses. It gave further insights into the coordinated regulation of ABA, auxin, and ethylene in seed growth and germination.

5.
Plant Physiol Biochem ; 200: 107743, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37186979

RESUMO

Ciboria shiraiana is a fungal pathogen and the causal agent of hypertrophy sorosis scleroteniosis (HSS) in mulberry, leading to substantial economic losses in the mulberry fruit-related industry. To obtain HSS resistant resources and investigate the resistance mechanism, the resistances of 14 mulberry varieties were assessed. Morus laevigata Wall. (MLW) varieties showed strong resistance to C. shiraiana, and the pathogen's infection was associated with mulberry fluorescence. Stigmas were identified as the infection site through cutting experiments. Susceptible varieties (S-varieties) displayed secretory droplets on their stigma papillar cell surfaces, while MLWs lacked these secretions. Correlation analysis between the secretion rate and the diseased fruit rate indicated that the differences between resistant varieties (R-varieties) and S-varieties were related to the stigma type. Furthermore, comparative transcriptome analysis was performed on stigma and ovary samples from R- and S-varieties. Compared with the stigma of R-varieties, the key differentially expressed genes (DEGs) with significantly higher expression in S-variety stigmas mainly participated in the fatty acid biosynthetic process. In R-variety stigmas and ovaries, the transcript levels of DEGs involved in defense response, including resistance (R) genes, were significantly higher than that of S-varieties. Overexpression of MlwRPM1-2 and MlwRGA3 enhances resistance to C. shiraiana and Sclerotinia sclerotiorum, but not Botrytis cinerea in tobacco. These findings help us explain the different resistance mechanisms of mulberry to C. shiraiana, and the critical defense genes in R-varieties can be applied to breeding antifungal plant varieties.


Assuntos
Morus , Morus/genética , Frutas/metabolismo , Melhoramento Vegetal , Perfilação da Expressão Gênica , Transcriptoma
6.
Front Plant Sci ; 13: 1061141, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36507424

RESUMO

Soil salinization severely inhibits plant growth and has become one of the major limiting factors for global agricultural production. Melatonin (N-acetyl-5-methoxytryptamine) plays an important role in regulating plant growth and development and in responding to abiotic stresses. Tryptamine-5-hydroxylase (T5H) is an enzyme essential for the biosynthesis of melatonin in plants. Previous studies have identified the gene MnT5H for melatonin synthesis in mulberry (Morus notabilis), but the role of this gene in response to salinity stress in mulberry is remain unclear. In this study, we ectopically overexpressed MnT5H2 in tobacco (Nicotiana tabacum L.) and treated it with NaCl solutions. Compared to wild-type (WT), melatonin content was significantly increased in the overexpression-MnT5H2 tobacco. Under salt stress, the expression of NtCAT, NtSOD, and NtERD10C and activity of catalase (CAT), peroxidase (POD), and the content of proline (Pro) in the transgenic lines were significantly higher than that in WT. The Malondialdehyde (MDA) content in transgenic tobacco was significantly lower than that of WT. Furthermore, transgenic tobacco seedlings exhibited faster growth in media with NaCl. This study reveals the changes of melatonin and related substance content in MnT5H2-overexpressing tobacco ultimately lead to improve the salt tolerance of transgenic tobacco, and also provides a new target gene for breeding plant resistance to salt.

7.
Genomics Proteomics Bioinformatics ; 20(6): 1119-1137, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36055564

RESUMO

Multiple plant lineages have independently evolved sex chromosomes and variable karyotypes to maintain their sessile lifestyles through constant biological innovation. Morus notabilis, a dioecious mulberry species, has the fewest chromosomes among Morus spp., but the genetic basis of sex determination and karyotype evolution in this species has not been identified. In this study, three high-quality genome assemblies were generated for Morus spp. [including dioecious M. notabilis (male and female) and Morus yunnanensis (female)] with genome sizes of 301-329 Mb and were grouped into six pseudochromosomes. Using a combination of genomic approaches, we found that the putative ancestral karyotype of Morus species was close to 14 protochromosomes, and that several chromosome fusion events resulted in descending dysploidy (2n = 2x = 12). We also characterized a ∼ 6.2-Mb sex-determining region on chromosome 3. Four potential male-specific genes, a partially duplicatedDNA helicase gene (named MSDH) and three Ty3_Gypsy long terminal repeat retrotransposons (named MSTG1/2/3), were identified in the Y-linked area and considered to be strong candidate genes for sex determination or differentiation. Population genomic analysis showed that Guangdong accessions in China were genetically similar to Japanese accessions of mulberry. In addition, genomic areas containing selective sweeps that distinguish domesticated mulberry from wild populations in terms of flowering and disease resistance were identified. Our study provides an important genetic resource for sex identification research and molecular breeding in mulberry.


Assuntos
Morus , Morus/genética , Genoma de Planta , Genômica , Cromossomos , China
8.
Front Bioeng Biotechnol ; 10: 843543, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35223802

RESUMO

Diapause is an important biological characteristic for many insect species to adapt to adverse environmental conditions and maintain the continuity of the race. Compared with the traditional hydrochloric acid or/and cold storage treatment methods, the artificial corona incubation technology of silkworm (Bombyx mori) eggs has many advantages including, the absence of pollution, easy operation and safety. However, this technology has not yet been applied in sericulture. In this study, we developed a novel artificial corona instrument to successfully disrupt the diapause of newly laid and refrigerated eggs from various Chinese and Japanese lineage silkworm strains. Subsequently, we invented a very early corona treatment (VECT) strategy to prevent the diapause of newly laid silkworm eggs within 4 h of oviposition. The hatching rates of the larvae were more than 95% in all diapause silkworm strains, which was comparable to the effect of the traditional HCl treatment strategy. In addition, we developed a combination strategy of VECT and pre-blastoderm microinjection and successfully created transgenic silkworms in various diapause strains. The results of the current study can aid in improving the corona artificial incubation technology and promote its application in sericulture.

9.
J Fungi (Basel) ; 7(12)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34947035

RESUMO

Hypertrophy sorosis scleroteniosis caused by Ciboria shiraiana is the most devastating disease of mulberry fruit. However, few mulberry lines show any resistance to C. shiraiana. An increasing amount of research has shown that host-induced gene silencing (HIGS) is an effective strategy for enhancing plant tolerance to pathogens by silencing genes required for their pathogenicity. In this study, two G protein α subunit genes, CsGPA1 and CsGPA2, were identified from C. shiraiana. Silencing CsGPA1 and CsGPA2 had no effect on hyphal growth but reduced the number of sclerotia and increased the single sclerotium weight. Moreover, silencing CsGpa1 resulted in increased fungal resistance to osmotic and oxidative stresses. Compared with wild-type and empty vector strains, the number of appressoria was clearly lower in CsGPA1-silenced strains. Importantly, infection assays revealed that the virulence of CsGPA1-silenced strains was significantly reduced, which was accompanied by formation of fewer appressoria and decreased expression of several cAMP/PKA- or mitogen-activated protein-kinase-related genes. Additionally, transgenic Nicotiana benthamiana expressing double-stranded RNA targeted to CsGpa1 through the HIGS method significantly improved resistance to C. shiraiana. Our results indicate that CsGpa1 is an important regulator in appressoria formation and the pathogenicity of C. shiraiana. CsGpa1 is an efficient target to improve tolerance to C. shiraiana using HIGS technology.

10.
Front Plant Sci ; 12: 708752, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34691094

RESUMO

Mulberry (Morus alba L.) leaves and fruit are traditional Chinese medicinal materials with anti-inflammatory, immune regulatory, antiviral and anti-diabetic properties. Melatonin performs important roles in the regulation of circadian rhythms and immune activities. We detected, identified and quantitatively analyzed the melatonin contents in leaves and mature fruit from different mulberry varieties. Melatonin and three novel isoforms were found in the Morus plants. Therefore, we conducted an expression analysis of melatonin and its isomer biosynthetic genes and in vitro enzymatic synthesis of melatonin and its isomer to clarify their biosynthetic pathway in mulberry leaves. MaASMT4 and MaASMT20, belonging to class II of the ASMT gene family, were expressed selectively in mulberry leaves, and two recombinant proteins that they expressed catalyzed the conversion of N-acetylserotonin to melatonin and one of three isomers in vitro. Unlike the ASMTs of Arabidopsis and rice, members of the three ASMT gene families in mulberry can catalyze the conversion of N-acetylserotonin to melatonin. This study provides new insights into the molecular mechanisms underlying melatonin and its isomers biosynthesis and expands our knowledge of melatonin isomer biosynthesis.

11.
Front Microbiol ; 12: 739686, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646256

RESUMO

Sclerotinia diseases are important plant fungal diseases that, causes huge economic worldwide losses every year. Ciboria shiraiana is the main pathogen that results in mulberry sclerotia diseases. Sclerotia and appressoria play important roles in long-term pathogen survival and in host infection during life and disease cycles. However, the molecular mechanisms of sclerotial development and appressoria formation in C. shiraiana have not been well studied. Here, an Asm1p, Phd1p, Sok2p, Efg1p and StuAp (APSES)-type transcription factor in C. shiraiana, CsXbp1, involved in sclerotial development and appressoria formation was functionally characterized. Bioinformatics analyses showed that CsXbp1 contained an APSES-type DNA binding domain. The expression levels of CsXbp1 were higher in sclerotia and during later stages of infection. Compared with wild-type strains, hyphal growth was slower, the number and weight of sclerotia were reduced significantly, and appressoria formation was obviously delayed in CsXbp1 RNA interference (RNAi) strains. Moreover, the CsXbp1 RNAi strains showed weakened pathogenicity owing to compound appressoria defects. Tobacco rattle virus-mediated host-induced gene silencing enabled Nicotiana benthamiana to increase its resistance to C. shiraiana by reducing the CsXbp1 transcripts level. Thus, CsXbp1 plays vital roles in sclerotial formation, appressoria formation, and pathogenicity in C. shiraiana. This study provides new insights into the infection mechanisms of C. shiraiana and plant resistance breeding.

12.
Phytochemistry ; 189: 112819, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34087504

RESUMO

Melatonin is recognized as an important regulator for human health and widely distributed in many plant species, including mulberry (Morus L.). Previous studies suggested mulberry contains high melatonin content, but the molecular mechanisms underlying melatonin biosynthesis in mulberry remain unclear. Here, 37 genes involved in melatonin biosynthesis were identified in mulberry genome, including a tryptophan decarboxylase gene (MnTDC), seven tryptophan 5-hydroxylase genes (MnT5Hs), six serotonin N-acetyltransferase genes (MnSNATs), 20 N-acetylserotonin methyltransferase genes (MnASMTs) and three caffeic acid 3-O-methyltransferase genes (MnCOMTs). Expression analysis showed that MnTDC, MnT5H2, MnSNAT5, MnASMT12 and MnCOMT1 from these genes had highest expression levels within their corresponding families. In vitro enzymatic assays indicated that MnTDC, MnT5H2, MnSNAT5, MnASMT12 and MnCOMT1 play important roles in melatonin biosynthesis. Multiple different pathways for melatonin biosynthesis in mulberry were discovered. In addition, mulberry ASMT showed distinct roles with those of ASTMs in Arabidopsis and rice. The class I ASMT, MnASMT12, and the class III ASMT, MnASMT20, catalyzed the conversion of N-acetylserotonin to melatonin and serotonin to 5-methoxytryptamine. Furthermore, the class II ASMT, MnASMT16, only catalyzed the conversion of N-acetylserotonin to melatonin. This study improved our knowledge on melatonin biosynthesis in mulberry and expands the repertoire of melatonin biosynthesis pathways in plants.


Assuntos
Arabidopsis , Melatonina , Morus , Oryza , Morus/genética
13.
Plant Physiol Biochem ; 161: 210-221, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33639589

RESUMO

ABA signaling plays a central role in regulating plants respond to drought. Although much progress has been made in understanding the functions of ABA signaling in drought response, very little information is available regarding woody plants. In this study, the components of ABA signaling pathway were identified in mulberry which has excellent adaptation to drought, including three PYLs, two PP2Cs, two SnRK2s, four ABFs, and an ABA responsive gene MaRD29B. The gene expression of ABA signaling components exhibited significant response to ABA and drought, and their roles in drought response were revealed using a transient transformation system in mulberry seedlings. We discovered the ABA signaling components, MaABI1/2 and MaSnRK2.1/2.4, could directly interact with G-protein γ subunits, MaGγ1 and MaGγ2, which indicated that G-protein γ subunits may mediate the signal crosstalk between G-proteins and ABA signaling. Transient activation assay in tobacco and RNAi silencing assay in mulberry further demonstrated that MaGγ1 and MaGγ2 regulated drought response by enhancing ABA signaling. This study expands the repertoire of ABA signaling controlling drought responses in plants and provides the direct evidence about the crosstalk between ABA signaling and G-proteins for the first time.


Assuntos
Proteínas Heterotriméricas de Ligação ao GTP , Morus , Ácido Abscísico , Secas , Regulação da Expressão Gênica de Plantas , Transdução de Sinais , Estresse Fisiológico
14.
Plant Sci ; 303: 110791, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33487365

RESUMO

Typically, Na+/H+ antiporters (NHXs) possess a conserved N-terminus for cation binding and exchange and a hydrophilic C-terminus for regulating the antiporter activity. Plant endosomal-type NHXs play important roles in protein trafficking, as well as K+ and vesicle pH homeostasis, however the role of the C-terminal tail remains unclear. Here, the function of MnNHX6, an endosomal-type NHX in mulberry, was investigated using heterologous expression in yeast. Functional and localization analyses of C-terminal truncation and mutations in MnNHX6 revealed that the C-terminal conserved region was responsible for the function and stability of the protein and its hydrophobicity, which is a key domain requirement. Nuclear magnetic resonance spectroscopy provided direct structural evidence and yeast two-hybrid screening indicated that this functional domain was also necessary for interaction with sorting nexin 1. Our findings demonstrate that although the C-terminal tail of MnNHX6 is intrinsically disordered, the C-terminal conserved region may be an important part of the external mouth of this transporter, which controls protein function and stability by serving as an inter-molecular cork with a chain mechanism. These findings improve our understanding of the roles of the C-terminal tail of endosomal-type NHXs in plants and the ion transport mechanism of NHX-like antiporters.


Assuntos
Proteínas de Plantas/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Western Blotting , Endossomos/metabolismo , Espectroscopia de Ressonância Magnética , Microscopia Confocal , Morus/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/fisiologia , Estabilidade Proteica , Saccharomyces cerevisiae/metabolismo , Trocadores de Sódio-Hidrogênio/química , Trocadores de Sódio-Hidrogênio/fisiologia , Técnicas do Sistema de Duplo-Híbrido
15.
Mol Plant Microbe Interact ; 34(1): 62-74, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33021883

RESUMO

Ciboria shiraiana causes hypertrophy sorosis scleroteniosis in mulberry trees, resulting in huge economic losses, and exploring its pathogenic mechanism at a genomic level is important for developing new control methods. Here, genome sequencing of C. shiraiana based on PacBio RSII and Illumina HiSeq 2500 platform as well as manual gap filling was performed. Synteny analysis with Sclerotinia sclerotiorum revealed 16 putative chromosomes corresponding to 16 chromosomes of C. shiraiana. Screening of rapid-evolution genes revealed that 97 and 2.4% of genes had undergone purifying selection and positive selection, respectively. When compared with S. sclerotiorum, fewer secreted effector proteins were found in C. shiraiana. The number of genes involved in pathogenicity, including secondary metabolites, carbohydrate active enzymes, and P450s, in the C. shiraiana genome was comparable with that of other necrotrophs but higher than that of biotrophs and saprotrophs. The growth-related genes and plant cell-wall-degradation-related genes in C. shiraiana were expressed in different developmental and infection stages, and may be potential targets for prevention and control of this pathogen. These results provide new insights into C. shiraiana pathogenic mechanisms, especially host range and necrotrophy features, and lay the foundation for further study of the underlying molecular mechanisms.[Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.


Assuntos
Ascomicetos , Genoma Fúngico , Doenças das Plantas , Ascomicetos/genética , Genoma Fúngico/genética , Hipertrofia/microbiologia , Morus/microbiologia , Doenças das Plantas/genética
16.
Ecotoxicol Environ Saf ; 209: 111816, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33360213

RESUMO

As a non-essential heavy metal, cadmium (Cd) is toxic to plants. In the last 15 years, over 70 transcriptome studies have been published to decipher the molecular response mechanism against Cd stress in different plants. To extract generalization results from transcriptomic data across different plants and obtain some hub genes that respond to Cd stress, we carried out a meta-analysis of 32 published datasets. Cluster analysis revealed that plant species played a more decisive role than the media used and exposure time in the transcriptome patterns of plant roots response to Cd. The datasets from a Gramineae-like (GL) group were closer in clustering. 838 DEGs were commonly Cd-regulated in at least nine of 18 GL datasets. Gene ontology and KEGG pathway analyses revealed that oxidative stress-related terms and lignin synthesis-related terms were significantly enriched. Mapman analysis revealed that these common DEGs were mainly involved in regulation, cellular response, secondary metabolism, transport, cell wall and lipid metabolism. In Oryza sativa, 15 DEGs were up-regulated in at least four of five HM (As, Cr, Cd, Hg and Pb) groups, such as Os10g0517500 (methionine gamma-lyase) and Os01g0159800 (bHLH107). Moreover, our datasets can be used to retrieve log2FC value of specific genes across 29 studies (48 datasets), which provides data reference for the subsequent selection of HM-related genes. Our results provide the basis for further understanding of Cd tolerance mechanisms in plants.


Assuntos
Cádmio/toxicidade , Poaceae/fisiologia , Poluentes do Solo/toxicidade , Estresse Fisiológico/genética , Transcriptoma/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Metais Pesados/metabolismo , Oryza/metabolismo , Raízes de Plantas/metabolismo , Poaceae/metabolismo , Metabolismo Secundário
17.
Int J Biol Macromol ; 169: 473-479, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33358779

RESUMO

Fibroin of the silkworm consists of fibroin heavy chain (Fib-H) with hydrophobic intermediate repeats flanked by hydrophilic N and C terminal domains (NTD and CTD, respectively), fibroin light chain (Fib-L), and P25. However, the respective roles of each polypeptide in silk processing remain largely unknown. Here, a series of transgenic silkworms with different fusion gene expression cassettes were created in order to selectively express different fluorescent fusion proteins in silk glands. The roles of different components in silk processing were investigated via observing and analyzing the movement and distribution of these proteins in the silk gland and in cocoon silk. The data showed that hydrophilic NTDs were distributed on the surface of micelles, providing sufficient electrostatic repulsion to prevent premature crystallization of silk proteins. Hydrophilic CTD==Ls ("==" represents the disulfide bond) were located on the inner layer of micelles to control the solubility of large micelles. The results presented here elucidated the underlying mechanisms of silkworm silk processing in vivo. This is significant for the development of artificial spinning technology, novel silk biomaterials, and silk gland expression systems.


Assuntos
Bombyx/metabolismo , Fibroínas/química , Fibroínas/metabolismo , Animais , Animais Geneticamente Modificados/genética , Materiais Biocompatíveis/metabolismo , Secreções Corporais/metabolismo , Bombyx/química , Fibroínas/fisiologia , Proteínas de Insetos/genética , Domínios Proteicos/fisiologia , Seda/metabolismo
18.
Phytochemistry ; 180: 112515, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32957017

RESUMO

Conventional wisdom holds that tea (Camellia sinensis) quality can be improved by drought. To clarify the underlying mechanism, a conjoint analysis of transcriptome and metabolome profiling was carried out in tea shoots harvested under different soil water contents (SWCs). Drought had little impact on theanine, catechins and caffeine in field conditions. Besides the flavor contributions of amino acid and their derivatives, organic acids, and nucleotides and their derivatives, the obviously increased isoflavonoids and glycosylflavonoids and the sharply decreased lipids are suggested to play key roles, which is mainly due to substantial increases of type III polyketide synthase B (PKSB), flavonol synthase/flavanone 3-hydroxylase (FLS), and UDP-glycosyltransferases (UGTs), as well as the significant repression of anthocyanidin synthase (ANS) and R2R3MYBs, and downregulated lipid metabolisms. Genes of GDSL esterase/lipase (GDSL), abscisic acid (ABA) and jasmonate (JA) signaling were found to play important roles in both flavonoid accumulation and lipid reduction. These findings increased our understanding of how moderate drought improves taste and aroma of tea by interfering in the metabolism of fresh leaves, which provides new insight into balancing compounds in pre-harvest tea shoots.


Assuntos
Camellia sinensis , Secas , Metaboloma , Folhas de Planta , Melhoria de Qualidade , Chá , Transcriptoma
19.
Mol Plant ; 13(7): 1001-1012, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32422187

RESUMO

Mulberry (Morus spp.) is the sole plant consumed by the domesticated silkworm. However, the genome of domesticated mulberry has not yet been sequenced, and the ploidy level of this species remains unclear. Here, we report a high-quality, chromosome-level domesticated mulberry (Morus alba) genome. Analysis of genomic data and karyotype analyses confirmed that M. alba is a diploid with 28 chromosomes (2n = 2x = 28). Population genomic analysis based on resequencing of 134 mulberry accessions classified domesticated mulberry into three geographical groups, namely, Taihu Basin of southeastern China (Hu mulberry), northern and southwestern China, and Japan. Hu mulberry had the lowest nucleotide diversity among these accessions and demonstrated obvious signatures of selection associated with environmental adaptation. Further phylogenetic analysis supports a previous proposal that multiple domesticated mulberry accessions previously classified as different species actually belong to one species. This study expands our understanding of genome evolution of the genus Morus and population structure of domesticated mulberry, which would facilitate mulberry breeding and improvement.


Assuntos
Cromossomos de Plantas , Evolução Molecular , Genoma de Planta , Morus/genética , DNA de Plantas , Interação Gene-Ambiente , Genes de Plantas , Variação Genética , Genética Populacional , Melhoramento Vegetal , Ploidias , Valores de Referência , Análise de Sequência de DNA
20.
J Hazard Mater ; 393: 122371, 2020 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-32151930

RESUMO

Fly ash is one of the largest solid waste and causes serious environment problems. Extraction of Al(OH)3 from fly ash is beneficial to environment and economy. We developed a clean electrolysis method to generate hydroxyl groups in situ to extract Al(OH)3 from fly ash leachate without adding chemicals or using expensive membranes, avoiding the introduction of new impurities, secondary pollutants generation, and membrane limitations. Batch experiments yielded porous electrolytic products with BET surface areas from 11.7610 to 25.5267 m2/g, pore volumes from 0.1935 to 0.1643 cm3/g and pore sizes from 65.7960 to 25.7434 nm. The composition of the electrolytic products was 86.43 wt% Al(OH)3, 9.00 wt% SO3, 1.67 wt% Fe(OH)3, and 0.29 wt% Ca(OH)2. The current efficiency was 90.51 % under optimized conditions of c (Al3+) = 0.1 M, t =2 h, and J = 750 A/m2. Mean particle size was from 24.1-98.1 µm. Impurities mainly affected the composition of the electrolytic products. The OH- generated by H2O reduction reacted with Al3+, Fe3+, and Ca2+ to generate a hydroxide. Fe3+ preceded Ca2+ into the hydroxide. H2 released continuously from H2O reduction, resulting in a porous hydroxide. The wastewater was reused as a leaching reagent to promote zero-pollution discharge.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA