Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Aesthetic Plast Surg ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413446

RESUMO

BACKGROUND: Autologous fat transplantation has been a cornerstone of tissue regeneration for decades. However, there is no standardized selection system or criteria for fat graft selection, often relying heavily on the surgeon's experience. OBJECTIVES: This study aimed to investigate various types of fat derivatives, both in vitro and in vivo at the same condition. METHODS: We collected traditional fat granules of different sizes and SVF-gel, evaluating the viability of ADSCs isolated from them and their performance after grafting into mice. RESULTS: Large fat granules exhibited more complete adipocyte structures, and the isolated ADSCs demonstrated superior differentiation, proliferation, and secretion capacities. They also showed excellent volume retention after 12 weeks. In contrast, ADSCs isolated from SVF-gel displayed lower vitality. However, grafts from SVF-gel exhibited the highest volume maintenance rate among the four groups after 12 weeks, closely resembling normal adipose tissue and displaying significant vascularization. Compared to large fat granule and SVF-gel group, medium and small fat granule grafts exhibited lower volume retention and less angiogenesis. CONCLUSIONS: Through preclinical studies, the flexible clinical use of different fat grafts can be tailored to their unique characteristics. LEVEL OF EVIDENCE I: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

3.
Heliyon ; 10(3): e24656, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38318060

RESUMO

Diabetic foot ulcer (DFU) is a chronic complication of diabetes. Wound healing in patients with DFU is generally very slow, with a high recurrence rate even after the ulcer healed. The DFU remains a major clinical challenge due to a lack of understanding of its pathogenesis. Given the significant impact of DFU on patient health and medical costs, enhancing our understanding of pathophysiological alterations and wound healing in DFU is critical. A growing body of research has shown that impaired activation of the HIF-1 pathway in diabetics, which weakens HIF-1 mediated responses to hypoxia and leads to down-regulation of its downstream target genes, leading to incurable diabetic foot ulcers. By analyzing and summarizing the literature in recent years, this review summarizes the mechanism of HIF-1 signaling pathway damage in the development of DFU, analyzes and compares the application of PHD inhibitors, VHL inhibitors, biomaterials and stem cell therapy in chronic wounds of diabetes, and proposes a new treatment scheme mediated by participation in the HIF-1 signaling pathway, which provides new ideas for the treatment of DFU.

4.
Aesthetic Plast Surg ; 48(7): 1473-1486, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38286898

RESUMO

Botulinum toxin type A (BTXA) has the potential to treat androgenetic alopecia (AGA); however, its impact on the apoptosis of dermal papillary cells (DPCs) is not yet fully understood. Noncoding RNAs play a crucial role in AGA. In this study, we investigated the potential mechanism by which BTXA alleviates apoptosis induced by dihydrotestosterone (DHT) in DPCs. We assessed the mRNA levels of circ_0135062, miR-506-3p, and Bax using qRT-PCR. Binding interactions were analyzed using RNA pulldown and dual-luciferase assays. Cell viability was determined using a cell counting kit-8 assay, and cell apoptosis was assessed using flow cytometry, TUNEL assays, and western blotting. Our findings revealed that BTXA inhibited the apoptosis of DPCs treated with DHT. Moreover, circ_0135062 overexpression counteracted the protective effect of BTXA on DHT-treated DPCs. MiR-506-3p was found to interact with Bax and inhibit apoptosis in DPCs by suppressing Bax expression in response to DHT-induced damage. Furthermore, circ_0135062 acted as a sponge for miR-506-3p, thereby inhibiting the targeting of Bax expression by miR-506-3p. In conclusion, BTXA exhibited an antiapoptotic effect on DHT-induced DPC injury via the circ_0135062/miR-506-3p/Bax axis.Level of Evidence II This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

5.
J Vis Exp ; (193)2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36939252

RESUMO

With the development of society and the economy, the incidence of diabetic foot ulcers continues to increase. Currently, conventional debridement with dressing changes, hyperbaric oxygen, and vacuum sealing drainage are the main conservative treatments in clinical practice, and large wounds often require skin grafts or skin flap grafts. However, the treatment effects are not ideal, and many complications exist. Due to its complex pathogenesis, long treatment time, significant associated difficulties, and high disability rate, diabetic foot ulcers cause a heavy burden to patients, society, and medical care. According to our previous study, the pharmacological effects of human umbilical cord blood stem cells include nonspecific immune regulation; increased secretion of growth factors, vasoactive factors, and anti-inflammatory factors; enhanced anti-infectious ability of the human body; elimination of inflammation; and promotion of angiogenesis and ulcer healing. These effects suggest stem cells may be useful as an autologous or allogeneic treatment for refractory wounds. Therefore, we are conducting a clinical trial to treat refractory diabetic wounds with human umbilical cord stem cells in our clinic for diabetic foot ulcer patients who meet the inclusion criteria.


Assuntos
Diabetes Mellitus , Pé Diabético , Células-Tronco Mesenquimais , Humanos , Pé Diabético/tratamento farmacológico , Pé Diabético/cirurgia , Cicatrização/fisiologia , Estudos Prospectivos , Cordão Umbilical , Células-Tronco Mesenquimais/metabolismo
6.
ACS Appl Mater Interfaces ; 15(1): 2459-2467, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36538496

RESUMO

Macroscopic supramolecular assembly (MSA) of building blocks larger than 1 µm provides new methodology for fabrication of functional supramolecular materials and a platform for mechanism investigation of interfacial phenomena. Most reports on MSA are restricted to soft hydrogels, and supramolecular groups can be directly integrated into a hydrogel matrix to generate sufficient attraction for maintaining macroscopic assemblies. For non-hydrogel stiff building blocks, two layer-by-layer modification processes consisting of flexible spacing coating and additional interacting groups are necessary to enable MSA, which is laborious and time-consuming. Approaches for highly efficient MSA based on flexible spacing coating are desired. In this work, MSA of polydimethylsiloxane (PDMS) building blocks is demonstrated by inducing microgel films that serve as both flexible spacing coating and surface functional groups, thus avoiding a two-step LbL modification process. By the varying bilayer number of microgel films, the MSA probability of modified PDMS increases from 54% at 3 bilayers to 100% at 6 bilayers. Control experiments and in situ force measurement strongly support the obtained MSA results and verify the dominant role of the microgel film as a flexible spacing coating and a supramolecularly interactive layer in achieving MSA. Moreover, the underlying mechanism is interpreted as low Young's modulus microgel films rendering surface groups highly mobile to enhance the multivalent interfacial binding. Taken together, this work has demonstrated the feasibility of MSA of rigid building blocks assisted by microgel films as flexible spacing coating and supramolecularly interactive layer simultaneously, which may extend the application fields of microgel materials to interfacial adhesion and advanced manufacturing with MSA methodology.

7.
PLoS One ; 17(12): e0279727, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36584197

RESUMO

The treatment of diabetic wound is a focus issue. At present, the Nocardia rubra cell wall skeleton (Nr-CWS) has been proved proven to promote angiogenesis and wound repair. Unfortunately, the high-glucose diabetic wound environment makes many drugs unable to be released effectively, and soon be removed. Smart thermosensitive poloxamer hydrogel (TH) is an ideal and adjustable drug delivery platform compatible with most living tissues. Here, a multifunctional composite thermosensitive hydrogel was developed. A mixture of poloxamers 407 and 188 as the gel matrix, and then it was physically mixed with Nr-CWS. The delivery vehicle not only controlled its release stably, preventing degradation in vitro, but also showed good affinity in vitro. In vivo, compared with thermosensitive poloxamer hydrogel alone or the direct use of Nr-CWS, the thermosensitive poloxamer hydrogel loaded with Nr-CWS promoted the proliferation of vascular endothelial cells effectively, resulting in increased expression of derma-related structural proteins and enhanced angiogenesis and wound healing. This study indicated that the angiogenesis and skin regeneration brought by Nr-CWS hydrogel are related to the activation of phosphatidylinositol 3 kinase and protein kinase B, Janus kinase/signal transducer and activator of transcription, and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase signaling pathways.


Assuntos
Diabetes Mellitus , Hidrogéis , Humanos , Hidrogéis/química , Poloxâmero/química , Células Endoteliais , Cicatrização
8.
Plast Reconstr Surg ; 150(6): 1264e-1274e, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36112847

RESUMO

BACKGROUND: Using immunomodulatory methods to address the challenging issue of craniofacial bone repair may be a potentially effective approach. The protease inhibitor saquinavir has been shown to inhibit the inflammatory response by targeting the toll-like receptor 4/myeloid differentiation primary response complex. Independently, inhibition of toll-like receptor 4 or myeloid differentiation primary response led to enhanced skull bone repair. Therefore, the authors aimed to investigate the effects of saquinavir on skull bone healing. METHODS: The effects of saquinavir on skull bone healing were assessed by means of gene expression, histology, immunohistochemistry, and tomography in a mouse calvarial defect model. Subsequently, the role of saquinavir in cell viability, migration, and osteogenic and osteoclastogenic differentiation was also evaluated in vitro. RESULTS: One-week saquinavir administration improved skull bone healing based on micro-computed tomographic and histomorphometric analyses. Compared to the vehicle control, 1-week saquinavir treatment (1) enhanced osteoclast infiltration (tartrate-resistant acid phosphatase staining) at day 7, but not at days 14 and 28; (2) induced more CD206 + M2 macrophage infiltration, but not F4/80 + M0 macrophages at days 7, 14, and 28; and (3) elevated osteoclastogenic gene RANKL (quantitative polymerase chain reaction) expression and other osteogenic and cytokine expression. Furthermore, in vitro data showed that saquinavir administration did not influence MC3T3-E1 cell migration or mineralization, whereas higher concentrations of saquinavir inhibited cell viability. Saquinavir treatment also enhanced the osteoclastic differentiation of bone marrow-derived precursors, and partially reversed high-mobility group box 1-driven osteoclastogenesis inhibition and elevated proinflammatory cytokine expression. CONCLUSION: The improved skull bone repair following short-term saquinavir treatment may involve enhanced osteoclastogenesis and modulated inflammatory response following skull injury. CLINICAL RELEVANCE STATEMENT: The authors' work demonstrates improved skull bone healing by short-term application of saquinavir, a drug traditionally used in the treatment of acquired immunodeficiency syndrome. As such, saquinavir may be repurposed for skeletal repair.


Assuntos
Inibidores da Protease de HIV , Saquinavir , Camundongos , Animais , Saquinavir/farmacologia , Saquinavir/metabolismo , Saquinavir/uso terapêutico , Inibidores da Protease de HIV/farmacologia , Inibidores da Protease de HIV/metabolismo , Inibidores da Protease de HIV/uso terapêutico , Receptor 4 Toll-Like/fisiologia , Osteogênese , Crânio/lesões
9.
Cells ; 11(11)2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35681421

RESUMO

Osteoporosis bears an imbalance between bone formation and resorption, which is strongly related to oxidative stress. The function of leonurine on bone marrow-derived mesenchymal stem cells (BMSCs) under oxidative stress is still unclear. Therefore, this study was aimed at identifying the protective effect of leonurine on H2O2 stimulated rat BMSCs. We found that leonurine can alleviate cell apoptosis and promote the differentiation ability of rat BMSCs induced by oxidative stress at an appropriate concentration at 10 µM. Meanwhile, the intracellular ROS level and the level of the COX2 and NOX4 mRNA decreased after leonurine treatment in vitro. The ATP level and mitochondrial membrane potential were upregulated after leonurine treatment. The protein level of PINK1 and Parkin showed the same trend. The mitophage in rat BMSCs blocked by 3-MA was partially rescued by leonurine. Bioinformatics analysis and leonurine-protein coupling provides a strong direct combination between leonurine and the PI3K protein at the position of Asp841, Glu880, Val882. In conclusion, leonurine protects the proliferation and differentiation of BMSCs from oxidative stress by activating mitophagy, which depends on the PI3K/Akt/mTOR pathway. The results showed that leonurine may have potential usage in osteoporosis and bone defect repair in osteoporosis patients.


Assuntos
Células-Tronco Mesenquimais , Osteoporose , Animais , Ácido Gálico/análogos & derivados , Humanos , Peróxido de Hidrogênio/farmacologia , Células-Tronco Mesenquimais/metabolismo , Mitofagia , Osteoporose/metabolismo , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Serina-Treonina Quinases TOR/metabolismo
10.
Biomed Res Int ; 2022: 6589651, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35097124

RESUMO

Breast cancer is the most common cancer among females. Dachshund Homolog 1 (DACH1) gene is regarded as an important tumor suppressor gene in breast cancer which plays an important regulatory role in the development disease progression, particularly in carcinomas. Circular RNAs (circRNAs) and microRNA (miRNA), regarded as a novel group of noncoding RNAs, are always involved in regulating gene expression. In this work, hsa_circ_0047604 expressed lower in breast cancer tissue and played the role of sponge of miR-548o. By this way, hsa_circ_0047604 could upregulate DACH1 to inhibit breast cancer. In conclusion, this study revealed that hsa_circ_0047604 acted as a tumor suppressor and regulated breast cancer progression via hsa_circ_0047604-miR-548o-DACH1 axis, which might provide a therapeutic method for breast cancer.


Assuntos
Neoplasias da Mama , MicroRNAs , RNA Circular , Fatores de Transcrição , Neoplasias da Mama/patologia , Proliferação de Células/genética , Proteínas do Olho/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Humanos , MicroRNAs/genética , RNA Circular/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Front Bioeng Biotechnol ; 9: 615191, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33708763

RESUMO

BACKGROUND: Leonurine, a major bioactive component from Herba leonuri, has been shown to exhibit anti-inflammatory and antioxidant effects. The aim of this study was to investigate the effect of leonurine on bone marrow-derived mesenchymal stem cells (BMSCs) as a therapeutic approach for treating osteoporosis. MATERIALS AND METHODS: Rat bone marrow-derived mesenchymal stem cells (rBMSCs) were isolated from 4-weeks-old Sprague-Dawley rats. The cytocompatibility of leonurine on rBMSCs was tested via CCK-8 assays and flow cytometric analyses. The effects of leonurine on rBMSC osteogenic differentiation were analyzed via ALP staining, Alizarin red staining, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot. Additionally, autophagy-related markers were examined via qRT-PCR and Western blot analyses of rBMSCs during osteogenic differentiation with leonurine and with or without 3-methyladenine (3-MA) as an autophagic inhibitor. Finally, the PI3K/Akt/mTOR signaling pathway was evaluated during rBMSC osteogenesis. RESULTS: Leonurine at 2-100 µM promoted the proliferation of rBMSCs. ALP and Alizarin red staining results showed that 10 µM leonurine promoted rBMSC osteoblastic differentiation, which was consistent with the qRT-PCR and Western blot results. Compared with those of the control group, the mRNA and protein levels of Atg5, Atg7, and LC3 were upregulated in the rBMSCs upon leonurine treatment. Furthermore, leonurine rescued rBMSC autophagy after inhibition by 3-MA. Additionally, the PI3K/AKT/mTOR pathway was activated in rBMSCs upon leonurine treatment. CONCLUSION: Leonurine promotes the osteoblast differentiation of rBMSCs by activating autophagy, which depends on the PI3K/Akt/mTOR pathway. Our results suggest that leonurine may be a potential treatment for osteoporosis.

12.
Front Bioeng Biotechnol ; 9: 737334, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35087796

RESUMO

Object: The aims of the study were to explore the protective effects of S-propargyl-cysteine (SPRC) on periodontitis and to determine the underlying mechanisms. Methods: A rat periodontitis model was constructed by injecting LPS and SPRC (0, 25, and 50 mg/kg/d) was administered intraperitoneally. H2S and CSE level were detected. The alveolar bone level was evaluated by micro-CT, HE staining and methylene blue staining analysis. Inflammation-related factors, Treg and Th17 cells were detected by immunohistochemistry, RT-PCR, immunofluorescence, Western blot and flow cytometry. Phosphorylation levels of ERK1/2 and CREB were analysed. Results: The administration of SPRC significantly increased the expression of CSE in the gingival tissue and the concentration of endogenous H2S in the peripheral blood. Simultaneously, SPRC significantly inhibited the resorption of alveolar bone based on the H&E staining, micro-CT and methylene blue staining analysis. Compared with the periodontitis group, the levels of IL-17A, IL-10 were downregulated and IL-6,TGF-ß1 were upregulated in the SPRC groups. In the SPRC group, the percentage of TH17 cells and the expression of ROR-γt were downregulated, while the percentage of Tregs and the expression of Foxp3 were upregulated accompanied with inhibition of phosphorylation ERK1/2 and CREB. Conclusion: SPRC can prevent the progression of periodontitis by regulating the Th17/Treg balance by inhibition of the ERK/CREB signalling pathway.

13.
Methods Mol Biol ; 2204: 207-215, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32710327

RESUMO

With the rapidly development of clinical treatments, precision medicine has come to people eyes with the requirement according to different people and different disease situation. So precision medicine is called personalized medicine which is a new frontier of healthcare. Bone tissue engineering developed from traditional bone graft to precise medicine era. So scientists seek approaches to harness stem cells, scaffolds, growth factors, and extracellular matrix to promise enhanced and more reliable bone formation. This review provides an overview of novel developments on precision medicine in tissue engineering of bone hoping it can open new perspectives of strategies on bone treatment.


Assuntos
Osso e Ossos/fisiologia , Medicina de Precisão/métodos , Engenharia Tecidual/métodos , Animais , Matriz Extracelular/fisiologia , Humanos , Células-Tronco/fisiologia , Alicerces Teciduais
14.
Tissue Eng Part B Rev ; 26(1): 46-63, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31588853

RESUMO

Tissue-engineered graft substitutes have shown great potential to treat large bone defects. While we usually assume that therapeutic approaches developed for appendicular bone healing could be similarly translated for application in craniofacial reconstruction and vice versa, this is not necessarily accurate. In addition to those more well-known healing-associated factors, such as age, lifestyle (e.g., nutrition and smoking), preexisting disease (e.g., diabetes), medication, and poor blood supply, the developmental origins and surrounding tissue of the wound sites can largely affect the fracture healing outcome as well as designed treatments. Therefore, the strategies developed for long bone fracture repair might not be suitable or directly applicable to skull bone repair. In this review, we discuss aspects of development, healing process, structure, and tissue engineering considerations between calvarial and long bones to assist in designing the tailored bone repair strategies. Impact Statement We summarized, in this review, the existing body of knowledge between long bone and calvarial bone with regard to their development and healing, tissue structure, and consideration of current tissue engineering strategies. By highlighting their similarities and differences, we propose that tailored tissue engineering strategies, such as scaffold features, growth factor usage, and the source of cells for tissue or region-specific bone repair, are necessary to ensure an optimized healing outcome.


Assuntos
Doenças Ósseas/terapia , Osso e Ossos/citologia , Consolidação da Fratura , Osteogênese , Crânio/citologia , Engenharia Tecidual/métodos , Animais , Humanos
15.
Oncol Rep ; 40(6): 3416-3426, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30272324

RESUMO

The aim of the present study was to define the function of microRNA­424­5p (miR­424) in breast cancer cells. The present study investigated the level and the potential function of miR­424 in breast cancer by reverse transcription­quantitative polymerase chain reaction assays. miR­424 expression was decreased in the majority of human breast cancer specimens and cell lines used in the present study. The MTT assay, plate colony formation assay and flow cytometry analyses were used to characterize the function of miR­424 in two types of breast cancer cell lines. Upregulation of miR­424 inhibited cellular proliferation and regulated the cell cycle by arresting cells in the G2/M cell phase. The dual­luciferase reporter assay was used to confirm the direct association between miR­424 and cyclin­dependent kinase 1 (CDK1). Silencing of CDK1 expression by CDK1 short interfering RNA also significantly suppressed cell proliferation and arrested cells in the G2/M cell phase. The results of the present study indicated that miR­424 can suppress cell proliferation and arrest cells in G2/M cell phase by negatively regulating CDK1 mRNA in human breast cancer, possibly through the Hippo pathway and the extracellular signal­regulated kinase pathway. The results of the present study provided novel evidence for the role of miR­424 in breast cancer.


Assuntos
Neoplasias da Mama/genética , Proteína Quinase CDC2/genética , Regulação para Baixo , MicroRNAs/genética , Regiões 3' não Traduzidas , Adulto , Idoso , Neoplasias da Mama/metabolismo , Proteína Quinase CDC2/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Transdução de Sinais
16.
Int J Oncol ; 52(6): 2001-2010, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29568874

RESUMO

Apoptosis-stimulating p53 protein 2 (ASPP2) is an apoptosis inducer that acts via binding with p53 and then enhancing the transcriptional activities toward pro­apoptosis genes. ASPP2 has recently been reported to serve a major role in p53­independent pathways. Triple­negative breast cancer (TNBC) is a type of breast cancer that is more aggressive and highly lethal when p53 is mutated. In the present study, the mRNA level of ASPP2 was found to be suppressed in breast tumors compared with that in adjacent normal breast tissues, and the expression of ASPP2 was also decreased in a series of breast cancer cell lines compared with that in MCF­10A normal breast cells. Downregulation of ASPP2 by specific small interfering RNA (siRNA) transfection was able to promote cell growth, reduce cell apoptosis, and contribute to cell migration and invasion. Furthermore, downregulation of ASPP2 promoted cell epithelial­mesenchymal transition (EMT) in MDA­MB­231 and HCC­1937 TNBC cells. Furthermore, it was found that when ASPP2 siRNA was transfected into MDA­MB­231 and HCC­1937 cells, the expression of phosphoinositide­3­kinase regulatory subunit 1 (p85α) decreased and phosphorylation of protein kinase B (AKT) increased, which are key molecular regulators in the phosphatidylinositol 3-kinase (PI3K)/AKT pathway. In conclusion, the present data indicated that ASPP2 had a crucial influence on the proliferation and metastasis in TNBC, and that the functional mechanism may be p53­independent to a great extent. ASPP2 and its link with the PI3K/AKT pathway deserve further investigation and may provide novel insights into therapeutic targets for TNBC.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Regulação para Baixo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Proteína Supressora de Tumor p53/metabolismo , Adulto , Idoso , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Pessoa de Meia-Idade , Invasividade Neoplásica , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/metabolismo
17.
Bioorg Med Chem ; 26(5): 1086-1091, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29422331

RESUMO

Octreotide is a somatostatin (SST) analogue currently used in the treatment of neuroendocrine tumors (NETs) with high binding affinity for the somatostatin receptor-2 (SSTR2) that is also overexpressed in non-small cell lung cancer cell (NSCLC). Alpha-particle-emitting astatine-211 (211At) is a promising radionuclide with appropriate physical and chemical properties for use in targeted anticancer therapies. To obtain an additional pharmacological agent for the treatment of NSCLC, we present the first investigation of the possible use of 211At-labeled octreotide as a potential alpha-radionuclide therapeutic agent for NSCLC treatment. 211At-SPC-octreotide exhibited observable higher uptake in lung, spleen, stomach and intestines than in other tissues. Through histological examination, 211At-SPC-octreotide demonstrated much more lethal effect than control groups (PBS, octreotide and free 211At). These promising preclinical results suggested that 211At labeled octreotide deserved to be further developed as a new anticancer agent for NSCLC.


Assuntos
Antineoplásicos/química , Octreotida/análogos & derivados , Compostos Radiofarmacêuticos/química , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Astato/química , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Octreotida/farmacocinética , Octreotida/uso terapêutico , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/farmacocinética , Distribuição Tecidual , Transplante Heterólogo
18.
Oncotarget ; 8(49): 85276-85289, 2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-29156719

RESUMO

Triple-negative breast cancer (TNBC) has the worst prognosis of all subtypes of breast cancer (BC), with limited options for conventional therapy and no targeted therapies. MicroRNAs (miRNAs) are small noncoding RNAs that negatively regulate gene expression. In this study, we aimed to determine whether two members of the miR-200 family, miR-200b-3p and miR-429-5p, are involved in BC cell proliferation and motility and to elucidate their target genes and pathways. We performed a meta-analysis that reveals down-regulated expression of miR-200b-3p and miR-429-5p in BC tissues and cell lines, consistent with a lower expression of miR-200b-3p and miR-429-5p in MDA-MB-231 and HCC1937 cells than in MCF-7 and MCF-10 cells. Overexpression of miR-200b-3p and miR-429-5p significantly inhibited the proliferation, migration, and invasion of TNBC cells; suppressed the expression of markers for proliferation and metastasis in TNBC cells. We next demonstrated that LIM domain kinase 1 (LIMK1) is a direct target gene of miR-200b-3p and miR-429-5p. Inhibition of LIMK1 reduced the expression and phosphorylation of cofilin 1 (CFL1), which polymerizes and depolymerizes F-actin and G-actin to reorganize cellular actin cytoskeleton. In addition, transfection with mimics for miR-200b-3p and miR-429-5p arrested G2/M and G0/G1 cell cycles respectively, suppressed the expression of the cell cycle-related complexes, cyclin D1/CDK4/CDK6 and cyclin E1/CDK2, in TNBC cells. In conclusion, miR-200b-3p and miR-429-5p suppress proliferation, migration, and invasion in TNBC cells, via the LIMK1/CFL1 pathway. These results provide insight into how specific miRNAs regulate TNBC progression and suggest that the LIMK1/CFL1 pathway is a therapeutic target for treating TNBC.

19.
Am J Transl Res ; 9(5): 2276-2285, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28559978

RESUMO

Breast cancer is the most common cancer in women worldwide. Triple-negative breast cancer is one of the most aggressive types of breast cancer as it has the worst clinical outcome for patients. microRNAs are a type of small non-coding RNA and play an important role in breast cancer. The purpose of this study was to explore the potential function and mechanism of miR-143-3p in triple-negative breast cancer (TNBC). MTT and colony formation assays, the effect of miR-143-3p modulation on MDA-MB-231 cell proliferation, revealed that increased miR-143-3p expression inhibited the proliferation of MDA-MB-231 TNBC cells. Moreover, miR-143-3p overexpression inhibited the movement of MDA-MB-231 TNBC cells in wound healing and transwell assays. To identify a potential miR-143-3p target, we investigated the effect of miR-143-3p modulation on LIMK1 expression level. Increased miR-143-3p expression caused a reduction in LIMK1 mRNA and protein, suggesting that LIMK1 is a target of miR-143-3p. In addition, dual-luciferase reporter assays showed that LIMK1 is a target gene of miR-143-3p. Flow cytometry analysis indicated that miR-143-3p arrested MDA-MB-231 TNBC cells at the G0/G1 phase. The TCGA (The Cancer Genome Atlas) database demonstrated that miR-143-3p was down-regulated in breast cancer tissues compared with normal breast tissues. These data demonstrated that miR-143-3p functioned as a suppressor gene in TNBC and that miR-143 targeted therapy may be a new strategy for TNBC treatment.

20.
Oncol Rep ; 37(3): 1619-1626, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28184936

RESUMO

RAB1A acts as an oncogene in various cancers, and emerging evidence has verified that RAB1A is an mTORC1 activator in hepatocellular and colorectal cancer, but the role of RAB1A in breast cancer remains unclear. In this investigation, RAB1A siRNA was successfully transfected in MDA-MB-231 and BT-549 human triple-negative breast cancer cells, and verified by real­time quantitative polymerase chain reaction and western blotting. Then, MTT cell proliferation, colony formation, cell invasion and wound healing assays were performed to characterize the function of RAB1A in the breast cancer cell lines. Downregulation of RAB1A inhibited cellular growth, cell migration, cell invasion and cell epithelial-mesenchymal transition. Furthermore, compared with NC siRNA transfected cells, RAB1A siRNA transfected breast cancer cells inhibited the phosphorylation of S6K1, the effector molecular of mTORC1. Collectively, our data suggested that RAB1A acts as an oncogene by regulating cellular proliferation, growth, invasion and metastasis via activation of mTORC1 pathway in triple-negative breast cancer.


Assuntos
Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Proteínas rab1 de Ligação ao GTP/metabolismo , Apoptose , Western Blotting , Feminino , Humanos , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Células Tumorais Cultivadas , Proteínas rab1 de Ligação ao GTP/antagonistas & inibidores , Proteínas rab1 de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA