RESUMO
Metabolism has been implicated in cell fate determination, particularly through epigenetic modifications. Similarly, lipid remodeling also plays a role in regulating cell fate. Here, we present comprehensive lipidomics analysis during BMP4-driven primed to naive pluripotency transition or BiPNT and demonstrate that lipid remodeling plays an essential role. We further identify Cpt1a as a rate-limiting factor in BiPNT, driving lipid remodeling and metabolic reprogramming while simultaneously increasing intracellular acetyl-CoA levels and enhancing H3K27ac at chromatin open sites. Perturbation of BiPNT by histone acetylation inhibitors suppresses lipid remodeling and pluripotency transition. Together, our study suggests that lipid remodeling promotes pluripotency transitions and further regulates cell fate decisions, implicating Cpt1a as a critical regulator between primed-naive cell fate control.
Assuntos
Carnitina O-Palmitoiltransferase , Metabolismo dos Lipídeos , Carnitina O-Palmitoiltransferase/metabolismo , Carnitina O-Palmitoiltransferase/genética , Animais , Camundongos , Diferenciação Celular , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Lipidômica , Reprogramação Celular/genéticaRESUMO
N6-methyladenonsine (m6A) is ubiquitously distributed in mammalian mRNA. However, the precise involvement of m6A in early development has yet to be fully elucidated. Here, we report that deletion of the m6A demethylase ALKBH5 in human embryonic stem cells (hESCs) severely impairs definitive endoderm (DE) differentiation. ALKBH5-/- hESCs fail to undergo the primitive streak (PS) intermediate transition that precedes endoderm specification. Mechanistically, we show that ALKBH5 deficiency induces m6A hypermethylation around the 3' untranslated region (3'UTR) of GATA6 transcripts and destabilizes GATA6 mRNA in a YTHDF2-dependent manner. Moreover, GATA6 binds to the promoters of critical regulatory genes involved in Wnt/ß-catenin signaling transduction, including the canonical Wnt antagonist DKK1 and DKK4, which are unexpectedly repressed upon the dysregulation of GATA6 mRNA metabolism. Remarkably, DKK1 and DKK4 both exhibit a pleiotropic effect in modulating the Wnt/ß-catenin cascade and guard the endogenous signaling activation underlying DE formation as potential downstream targets of the ALKBH5-GATA6 regulation. Here, we unravel a role of ALKBH5 in human endoderm formation in vitro by modulating the canonical Wnt signaling logic through the previously unrecognized functions of DKK1/4, thus capturing a more comprehensive role of m6A in early human embryogenesis.
Assuntos
Homólogo AlkB 5 da RNA Desmetilase , Diferenciação Celular , Endoderma , Peptídeos e Proteínas de Sinalização Intercelular , Via de Sinalização Wnt , Humanos , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/genética , Endoderma/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Diferenciação Celular/genética , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Regiões 3' não Traduzidas , Fator de Transcrição GATA6/metabolismo , Fator de Transcrição GATA6/genética , beta Catenina/metabolismo , beta Catenina/genética , Regulação da Expressão Gênica no Desenvolvimento , Linhagem Celular , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Regiões Promotoras GenéticasRESUMO
AIMS/INTRODUCTION: Diabetes mellitus is a traditional risk factor for heart failure (HF), and glycated albumin (GA) is a marker to assess short-term glycemic control. Whether GA has prognostic significance in patients with HF remains unclear. MATERIALS AND METHODS: A total of 717 patients with HF were enrolled in the prospective cohort study. Patients were grouped by the normal upper limit of GA (17%). Kaplan-Meier analysis and Cox proportional hazards regression were used to evaluate the association between GA and prognosis. RESULTS: During a mean follow-up of 387 days, 232 composite endpoint events of hospitalization for HF or all-cause death occurred. Kaplan-Meier analysis showed a higher rate of adverse events in the higher GA group (GA >17%; log-rank test P < 0.001). GA was an independent predictor of adverse events, both as a continuous variable (per 1% change: hazard ratio [HR] 1.03, 95% confidence interval [CI] 1.00-1.06, P = 0.030) and as a categorical variable (GA >17%: HR 1.36, 95% CI 1.03-1.80, P = 0.032). Restricted cubic splines showed a linear association between GA and adverse events (P for non-linearity = 0.231). There was no significant difference in adverse outcome risk between those with diabetes and GA ≤17% and those without diabetes, whereas the prognosis was worse in those with diabetes and GA >17% (HR 1.56, 95% CI 1.16-2.11, P = 0.004). Compared to the group with normal levels of GA and glycated hemoglobin, the group with GA >17% and glycated hemoglobin >6.5% had a higher risk of adverse events (HR 1.49, 95% CI 1.06-2.10, P = 0.022). CONCLUSIONS: GA was an independent predictor of HF prognosis. Combining GA and glycated hemoglobin might improve the predictive power of adverse outcomes in patients with HF.
Assuntos
Biomarcadores , Albumina Sérica Glicada , Produtos Finais de Glicação Avançada , Insuficiência Cardíaca , Albumina Sérica , Humanos , Feminino , Masculino , Estudos Prospectivos , Idoso , Prognóstico , Pessoa de Meia-Idade , Albumina Sérica/análise , Biomarcadores/sangue , Fatores de Risco , Hemoglobinas Glicadas/análise , Seguimentos , Hospitalização/estatística & dados numéricos , Estimativa de Kaplan-MeierRESUMO
Cell fate is likely regulated by a common machinery, while components of this machine remain to be identified. Here we report the design and testing of engineered cell fate controller NanogBiD, fusing BiD or BRG1 interacting domain of SS18 with Nanog. NanogBiD promotes mouse somatic cell reprogramming efficiently in contrast to the ineffective native protein under multiple testing conditions. Mechanistic studies further reveal that it facilitates cell fate transition by recruiting the intended Brg/Brahma-associated factor (BAF) complex to modulate chromatin accessibility and reorganize cell state specific enhancers known to be occupied by canonical Nanog, resulting in precocious activation of multiple genes including Sall4, miR-302, Dppa5a and Sox15 towards pluripotency. Although we have yet to test our approach in other species, our findings suggest that engineered chromatin regulators may provide much needed tools to engineer cell fate in the cells as drugs era.
Assuntos
Proteína Homeobox Nanog , Fatores de Transcrição , Animais , Camundongos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteína Homeobox Nanog/metabolismo , Proteína Homeobox Nanog/genética , Reprogramação Celular/genética , Cromatina/metabolismo , Cromatina/genética , DNA Helicases/metabolismo , DNA Helicases/genética , Diferenciação Celular , Engenharia Celular/métodos , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genéticaRESUMO
Background: Inflammation is essential in cardiorenal syndrome, however there is still a lack of evidence proving the interaction between cardiac injury, renal dysfunction and the inflammatory response. This study aimed to illustrate the association between renal dysfunction and cardiac injury with a specific focus on the role of inflammation. Methods: A single-center, retrospective study included patients with heart failure admitted to the cardiovascular department from September 2019 to April 2022. Patients received cardiovascular magnetic resonance (CMR) imaging (T1 mapping and late gadolinium enhancement (LGE)). Demographic, creatinine and native T1 were analyzed using pearson correlation, linear regression and adjusted for confounders. Interaction and subgroup analysis were performed. Results: Finally, 50 validated heart failure (HF) patients (age 58.5 ± 14.8 years; 78.0% men) were included. Cardiac global native T1 for the high estimated glomeruar filtration rate (eGFR) group was 1117.0 ± 56.6 ms, and for the low eGFR group was 1096.5 ± 61.8 ms. Univariate analysis identified global native T1 ( ß = 0.16, 95% confidence interval (CI): 0.04-0.28, p = 0.014) and C-reactive protein (CRP) ( ß = 0.30, 95% CI: 0.15-0.45, p < 0.001) as determinants of creatinine. Multivariable linear regression analysis identified global native T1 ( ß = 0.12, 95% CI: 0.01-0.123, p = 0.040) as a determinant of creatinine while age and diabetes were adjusted. Significant interactions between CRP and global native T1 in relation to creatinine level (p for interaction = 0.005) were identified. Conclusions: Kidney dysfunction was associated with cardiac injury and inflammation, respectively. The interaction between myocardial injury and kidney dysfunction is contingent on the severity of the inflammatory response. Further studies were needed to identify the mechanisms of the inflammatory response in cardiorenal syndrome.
RESUMO
Pluripotent stem cells have the potential to generate embryo models that can recapitulate developmental processes in vitro. Large animals such as pigs may also benefit from stem-cell-based embryo models for improving breeding. Here, we report the generation of blastoids from porcine embryonic stem cells (pESCs). We first develop a culture medium 4FIXY to derive pESCs. We develop a 3D two-step differentiation strategy to generate porcine blastoids from the pESCs. The resulting blastoids exhibit similar morphology, size, cell lineage composition, and single-cell transcriptome characteristics to blastocysts. These porcine blastoids survive and expand for more than two weeks in vitro under two different culture conditions. Large animal blastoids such as those derived from pESCs may enable in vitro modeling of early embryogenesis and improve livestock species' breeding practices.
RESUMO
Cell fate decisions remain poorly understood at the molecular level. Embryogenesis provides a unique opportunity to analyze molecular details associated with cell fate decisions. Works based on model organisms have provided a conceptual framework of genes that specify cell fate control, for example, transcription factors (TFs) controlling processes from pluripotency to immunity1. How TFs specify cell fate remains poorly understood. Here we report that SALL4 relies on NuRD (nucleosome-remodeling and deacetylase complex) to interpret BMP4 signal and decide cell fate in a well-controlled in vitro system. While NuRD complex cooperates with SALL4 to convert mouse embryonic fibroblasts or MEFs to pluripotency, BMP4 diverts the same process to an alternative fate, PrE (primitive endoderm). Mechanistically, BMP4 signals the dissociation of SALL4 from NuRD physically to establish a gene regulatory network for PrE. Our results provide a conceptual framework to explore the rich landscapes of cell fate choices intrinsic to development in higher organisms involving morphogen-TF-chromatin modifier pathways.
Assuntos
Proteína Morfogenética Óssea 4 , Diferenciação Celular , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Fatores de Transcrição , Animais , Camundongos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteína Morfogenética Óssea 4/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Cromatina/metabolismo , Redes Reguladoras de Genes , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Endoderma/metabolismo , Endoderma/citologia , Transdução de Sinais , Linhagem da Célula , Proteínas de Ligação a DNARESUMO
Nuclear condensates have been shown to regulate cell fate control, but its role in oncogenic transformation remains largely unknown. Here we show acquisition of oncogenic potential by nuclear condensate remodeling. The proto-oncogene SS18 and its oncogenic fusion SS18-SSX1 can both form condensates, but with drastically different properties and impact on 3D genome architecture. The oncogenic condensates, not wild type ones, readily exclude HDAC1 and 2 complexes, thus, allowing aberrant accumulation of H3K27ac on chromatin loci, leading to oncogenic expression of key target genes. These results provide the first case for condensate remodeling as a transforming event to generate oncogene and such condensates can be targeted for therapy. One sentence summary: Expulsion of HDACs complexes leads to oncogenic transformation.
Assuntos
Histona Desacetilase 1 , Histona Desacetilase 2 , Proto-Oncogene Mas , Humanos , Histona Desacetilase 1/metabolismo , Histona Desacetilase 1/genética , Histona Desacetilase 2/metabolismo , Histona Desacetilase 2/genética , Núcleo Celular/metabolismo , Cromatina/metabolismo , Cromatina/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Histonas/metabolismo , AnimaisRESUMO
BACKGROUND: First-phase ejection fraction (EF1) is a novel measurement of early left ventricular systolic dysfunction. We investigate its prognostic value in patients with heart failure (HF). METHODS AND RESULTS: Patients with HF were prospectively enrolled from July 2019 to September 2021. A total of 228 patients were included in the final analysis. The primary endpoint was the composite of all-cause mortality or rehospitalization for HF, which occurred in 74 patients (32.46%). EF1 as well as other parameters for left ventricular function were measured in echocardiography. Time-dependent ROC showed the cutoff value of EF1 was 18.55%. Kaplan-Meier analysis indicated a higher rate of adverse events in the lower EF1 group (EF1 ≤ 18.55%) (Log-rank test P < 0.001). Cox regression analyses showed EF1 was an independent predictor with adverse events as a continuous variable (Cox model 1: per 1% change in EF1: HR = 0.92, 95%CI: 0.87-0.97, P < 0.001), as well as a categorical variable (Cox model 2: EF1 > 18.55%: HR = 0.21, 95%CI: 0.08-0.53, P < 0.001) after adjustment for hypertension, coronary artery disease (CAD), Log10 (NT-proBNP), eGFR, E/e' and loop diuretics. Restricted cubic splines revealed a linear association between EF1 levels and the incidence of adverse events (P for non-linearity = 0.145). The subgroup analyses showed the predictive ability of elevated EF1 on the decreased risk of adverse events did not change substantially stratified by HF classification, age, CAD and hypertension. CONCLUSION: EF1, as a novel measurement of early systolic function, is a promising predictor of adverse events among HF patients. EF1 might be considered a new measurement for risk stratification of HF.
Assuntos
Insuficiência Cardíaca , Hipertensão , Humanos , Volume Sistólico , Função Ventricular Esquerda , Prognóstico , Insuficiência Cardíaca/diagnóstico por imagemRESUMO
In recent years, vacancy-ordered halide double perovskites have emerged as promising non-toxic and stable alternatives for their lead-based counterparts in optoelectronic applications. In particular, vacancy ordered Cs2PtI6 has emerged as a star material because of its high absorption coefficient, band gap of 1.37 eV, and long minority carrier lifetime. Despite substantial experimental research on this new class of material, theoretical simulations of their device properties remain scarce. In this work, a novel n-i-p device architecture (FTO/SnO2/Cs2PtI6/MoO3/C) is theoretically investigated using a solar cell capacitance simulator (SCAPS-1D). Theoretical investigations are carried out in order to optimize the device performance structure by varying the perovskite and selective charge transport layer thickness, absorber and interface defect density, operating temperature, back contact, series and shunt resistance, respectively. The optimized device showed an impressive power conversion efficiency (PCE) of 23.52% at 300 K, which is higher than the previously reported values. Subsequent analysis of the device's spectral response indicated that it possessed 98.9% quantum efficiency (QE) and was visibly active. These findings will provide theoretical guidelines for enhancing the performance of Cs2PtI6-based photovoltaic solar cells (PSCs) and pave the way for the widespread implementation of environmentally benign and stable perovskites.
RESUMO
Cell fate decision involves rewiring of the genome, but remains poorly understood at the chromatin level. Here, we report that chromatin remodeling complex NuRD participates in closing open chromatin in the early phase of somatic reprogramming. Sall4, Jdp2, Glis1 and Esrrb can reprogram MEFs to iPSCs efficiently, but only Sall4 is indispensable capable of recruiting endogenous components of NuRD. Yet knocking down NuRD components only reduces reprogramming modestly, in contrast to disrupting the known Sall4-NuRD interaction by mutating or deleting the NuRD interacting motif at its N-terminus that renders Sall4 inept to reprogram. Remarkably, these defects can be partially rescured by grafting NuRD interacting motif onto Jdp2. Further analysis of chromatin accessibility dynamics demonstrates that the Sall4-NuRD axis plays a critical role in closing the open chromatin in the early phase of reprogramming. Among the chromatin loci closed by Sall4-NuRD encode genes resistant to reprogramming. These results identify a previously unrecognized role of NuRD in reprogramming, and may further illuminate chromatin closing as a critical step in cell fate control.
Assuntos
Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Fatores de Transcrição , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Fatores de Transcrição/genética , Diferenciação Celular/genética , Histona Desacetilases/genética , Cromatina , Reprogramação Celular/genéticaRESUMO
Cellular mechanical properties are considered to be important factors affecting cell fate transitions, but the links between cellular mechanical properties and transition efficiency and chromatin structure remain elusive. Here, we predicted that mechanical strain treatment could induce signatures of cellular dedifferentiation and transdifferentiation, and we validated this prediction by showing that mechanical strain-treated mouse cumulus cells (CCs) exhibit significantly improved somatic cell nuclear transfer (SCNT) reprogramming efficiency. We found that the chromatin accessibility of CCs was globally increased by mechanical strain treatment and that this increase was partially mediated by the induction of the YAP-TEAD interaction. Moreover, using mechanical strain-treated CCs could prevent transcriptional dysregulation in SCNT embryos. Taken together, our study results demonstrated that modulating cell mechanical properties to regulate epigenetic status is a promising approach to facilitate cell fate transition.
Assuntos
Cromatina , Técnicas de Transferência Nuclear , Animais , Camundongos , Cromatina/genética , Reprogramação Celular/genética , Embrião de Mamíferos , Desenvolvimento Embrionário/genéticaRESUMO
Background: Mitral regurgitation (MR) has a high prevalence and aggravates hypoperfusion and hypoxia in heart failure (HF). Renal tubular epithelial cells are sensitive to hypoxia, and therefore tubulointerstitial damage is quite common in HF. However, the correlation between tubular dysfunction and MR has not been studied. The aim of this work was to evaluate the prognostic significance of urinary N-acetyl- ß -d-glucosaminidase (uNAG), a biomarker of renal tubular damage, in patients with HF and MR. Methods: This was a prospective cohort study of 390 patients (mean age 64 years; 65.6% male) with uNAG measurement on admission (expressed as urinary NAG/urinary creatinine) and at least 1 year of follow-up data. The pre-defined primary endpoint was the composite of all-cause mortality or rehospitalization for HF after discharge. Cox regression analysis, restricted cubic splines, and subgroup analysis were used to investigate the prognostic value of uNAG modeled as a categorical (quartiles) or continuous (per SD increase) variable. Results: A total of 153 (39.23%) patients reached the composite endpoint over a median follow-up time of 1.2 years. The uNAG level correlated with the severity of HF and with the incidence of adverse events. In a multivariable Cox regression model, each SD (13.80 U/g â Cr) of increased uNAG was associated with a 17% higher risk of death or HF rehospitalization (95% confidence interval, 2-33%, p = 0.022), and a 19% higher risk of HF rehospitalization (p = 0.027). Subgroup analysis revealed the associations between uNAG and poor prognosis were only significant in younger patients ( ≤ 65 years) and in patients without obvious cardiovascular comorbidities. Conclusions: uNAG levels at admission were associated with the risk of adverse outcomes in patients with HF and MR. Additional studies are needed to further investigate the heart-kidney interaction.
RESUMO
Background: Iron deficiency is common in cardiovascular diseases (CVD), e.g., heart failure and coronary heart disease. Soluble transferrin receptor (sTfR) is a promising marker representing unmet cellular iron demands. However, whether higher serum sTfR is associated with increased risk of CVDs needs further investigation. Methods: In the present cross-sectional study, we analyzed data of 4,867 adult participants of the National Health and Nutrition Examination Survey (NHANES) 2017-2018. Linear regression models were employed to identify possible correlations between sTfR and other characteristics. The association between sTfR and CVDs was assessed with univariable and multivariable logistics regression models. Results: The prevalence of CVDs was 9.5% among participants, and higher sTfR levels were found in participants with CVDs (p < 0.001). Linear regression models revealed positive associations between sTfR and age, body mass index, systolic blood pressure, glycated hemoglobulin A1c, and insulin resistance (all p < 0.001). In the multivariable logistics regression model, the adjusted odds ratio of sTfR for CVDs was 2.05 (per 1 log2 mg/L, 95% confidence interval: 1.03â¼4.05, p = 0.046). Further subgroup analysis identified the associations of sTfR and CVDs were only significant in participants ≥60 years old, or with hypertension (all p < 0.05). Conclusion: Our study demonstrated that increased serum sTfR levels were associated with a high prevalence of cardiovascular diseases.
RESUMO
As an aberrant base in DNA, uracil is generated by either deoxyuridine (dU) misincorporation or cytosine deamination, and involved in multiple physiological and pathological processes. Genome-wide profiles of uracil are important for study of these processes. Current methods for whole-genome mapping of uracil all rely on uracil-DNA N-glycosylase (UNG) and are limited in resolution, specificity, and/or sensitivity. Here, we developed a UdgX cross-linking and polymerase stalling sequencing ("Ucaps-seq") method to detect dU at single-nucleotide resolution. First, the specificity of Ucaps-seq was confirmed on synthetic DNA. Then the effectiveness of the approach was verified on two genomes from different sources. Ucaps-seq not only identified the enrichment of dU at dT sites in pemetrexed-treated cancer cells with globally elevated uracil but also detected dU at dC sites within the "WRC" motif in activated B cells which have increased dU in specific regions. Finally, Ucaps-seq was utilized to detect dU introduced by the cytosine base editor (nCas9-APOBEC) and identified a novel off-target site in cellular context. In conclusion, Ucaps-seq is a powerful tool with many potential applications, especially in evaluation of base editing fidelity.
Assuntos
NucleotídeosRESUMO
Leptin receptor (LepR)-positive cells are key components of the bone marrow hematopoietic microenvironment, and highly enrich skeletal stem and progenitor cells that maintain homeostasis of the adult skeleton. However, the heterogeneity and lineage hierarchy within this population has been elusive. Using genetic lineage tracing and single-cell RNA sequencing, we found that Lepr-Cre labels most bone marrow stromal cells and osteogenic lineage cells in adult long bones. Integrated analysis of Lepr-Cre-traced cells under homeostatic and stress conditions revealed dynamic changes of the adipogenic, osteogenic, and periosteal lineages. Importantly, we discovered a Notch3+ bone marrow sub-population that is slow-cycling and closely associated with the vasculatures, as well as key transcriptional networks promoting osteo-chondrogenic differentiation. We also identified a Sca-1+ periosteal sub-population with high clonogenic activity but limited osteo-chondrogenic potential. Together, we mapped the transcriptomic landscape of adult LepR+ stem and progenitor cells and uncovered cellular and molecular mechanisms underlying their maintenance and lineage specification.
Assuntos
Osso e Ossos/citologia , Receptores para Leptina/metabolismo , Análise de Célula Única/métodos , Células-Tronco/fisiologia , Envelhecimento/fisiologia , Animais , Antígenos Ly/metabolismo , Diferenciação Celular , Linhagem da Célula , Ensaio de Unidades Formadoras de Colônias , Feminino , Fraturas Ósseas , Perfilação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Rosiglitazona/farmacologia , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Estresse FisiológicoRESUMO
Background: Mitral regurgitation (MR) is one of the common complications of heart failure (HF). The prevalence and characteristics of MR are rarely investigated, especially in the Chinese population. Objectives: The purpose of this study was to determine the prevalence and characteristics of non-organic MR in HF patients and subgroups defined by ejection fraction. Methods: A single-center, hospital-based, and retrospective chart review study included patients with heart failure admitted to the cardiovascular department from January 2017 to April 2020. Demographic characteristics, laboratory results, and echocardiogram results before discharge were analyzed in different groups defined by left ventricular ejection fraction (EF) using logistic regression and adjusted for confounders. Results: Finally, 2418 validated HF patients (age 67.2 ± 13.5 years; 68.03% men) were included. The prevalence of MR was 32.7% in HF, 16.7% in HF with preserve EF patients, 28.4% in HF with mid-range EF patients and 49.7% in HF with reduced EF (HFrEF) patients. In the HF with preserved EF group, multivariable logistic regression showed that 4 factors associated with MR including EF (odds ratio (OR) 0.954 (0.928-0.981), p = 0.001), left ventricular posterior wall thickness in diastolic phase (LVPWd) (OR 0.274 (0.081-0.932), p = 0.038), left atrium (LA) dimension (OR 2.049 (1.631-2.576), p < 0.001) and age (OR 1.024 (1.007-1.041), p = 0.007). In the HF with midrange EF group, multivariable logistic regression showed that 3 factors associated with MR including LA dimension (OR 2.009 (1.427-2.829), p < 0.001), triglycerides (TG) (OR 0.552 (0.359-0.849), p = 0.007) and digoxin (OR 2.836 (1.624-4.951), p < 0.001). In the HFrEF group, multivariable logistic regression showed that 7 factors associated with MR including EF (OR 0.969 (0.949-0.990), p = 0.004), (OR 0.161 (0.067-0.387), p < 0.001), LA dimension (OR 2.289 (1.821-2.878), p < 0.001), age (OR 1.016 (1.004-1.027)), p = 0.009), TG (OR 0.746 (0.595-0.936), p = 0.011), diuretics (OR 0.559 (0.334-0.934), p = 0.026) and ICD (OR 1.898 (1.074-3.354), p = 0.027). Conclusions: HF patients had a high burden of MR, particularly in the HFrEF group. Worsen cardiac structure (LA dimension and LVPWd) and function (EF), age, and medical treatment strategy played essential roles in MR.
RESUMO
Trimetazidine has been reported to benefit patients with heart failure (HF) and angina. The impact of trimetazidine on non-ischemic HF remains unclear. We reviewed clinical trials to investigate whether trimetazidine could improve exercise endurance, life quality, and heart function in non-ischemic HF patients. We searched the Cochrane Central Register of Controlled Trials, EMBASE, PubMed, and Web of science for randomized clinical trials published before April 30th, 2020; Studies limited to patients with non-ischemic HF, aged ≥18 years, comparing trimetazidine with conventional therapy with/without placebo. Outcome measurements included primary outcomes (6 minutes walking test (6-MWT)) and secondary outcomes (life quality scores, echocardiography parameters, biomarker, peak oxygen consumption). The follow-up period was longer than three months. This study was registered with international prospective register of systematic reviews (PROSPERO) (CRD42020182982). Six studies with 310 cases were included in this research. Trimetazidine significantly improved 6-MWT (weighted mean difference (WMD) = 48.51 m, 95% confidence interval (CI) [29.41, 67.61], p < 0.0001, I2 = 0%), left ventricle ejection fraction (LVEF) (WMD = 3.09%, 95% CI [1.09, 5.01], p = 0.002, I2 = 0%) at 3 months, and LVEF (WMD = 6.09%, 95% CI [3.76, 8.42], p < 0.0001, I2 = 12%) at 6 months. Furthermore, it reduced peak oxygen consumption (WMD = -2.24 mL/kg per minute, 95% CI [-4.09, -0.93], p = 0.02). This meta-analysis suggested that trimetazidine might be an effective strategy for improving exercise endurance and cardiac function in patients with non-ischemic HF.
Assuntos
Insuficiência Cardíaca , Trimetazidina , Adolescente , Adulto , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/tratamento farmacológico , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Resultado do Tratamento , Trimetazidina/efeitos adversos , Vasodilatadores/efeitos adversosRESUMO
MOTIVATION: The increasing amount of time-series single-cell RNA sequencing (scRNA-seq) data raises the key issue of connecting cell states (i.e. cell clusters or cell types) to obtain the continuous temporal dynamics of transcription, which can highlight the unified biological mechanisms involved in cell state transitions. However, most existing trajectory methods are specifically designed for individual cells, so they can hardly meet the needs of accurately inferring the trajectory topology of the cell state, which usually contains cells assigned to different branches. RESULTS: Here, we present CStreet, a computed Cell State trajectory inference method for time-series scRNA-seq data. It uses time-series information to construct the k-nearest neighbor connections between cells within each time point and between adjacent time points. Then, CStreet estimates the connection probabilities of the cell states and visualizes the trajectory, which may include multiple starting points and paths, using a force-directed graph. By comparing the performance of CStreet with that of six commonly used cell state trajectory reconstruction methods on simulated data and real data, we demonstrate the high accuracy and high tolerance of CStreet. AVAILABILITY AND IMPLEMENTATION: CStreet is written in Python and freely available on the web at https://github.com/TongjiZhanglab/CStreet and https://doi.org/10.5281/zenodo.4483205. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.