Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 356: 120664, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508006

RESUMO

Continuous discharge of wastewater, emissions, and solid wastes from steelworks poses environmental risks to ecosystems. However, the role of keystone taxa in maintaining multifunctional stability during environmental disturbances remains poorly understood. To address this, we investigated the community diversity, assembly mechanisms, and soil multifunctionality of soils collected from within the steelworks (I), within 2.5 km radius from the steelworks (E), and from an undisturbed area (CK) in Jiangsu Province, China, via 16 S rRNA sequencing. Significant differences were found in the Chao1 and the richness indexes of the total taxa (p < 0.05), while the diversity of keystone taxa was not significant at each site (p > 0.05). The deterministic processes for total taxa were 42.9%, 61.9% and 47.7% in CK, E, and I, respectively. Steelworks stress increased the deterministicity of keystone taxa from 52.3% in CK to 61.9% in E and I soils. The average multifunctionality indices were 0.518, 0.506 and 0.513 for CK, E and I, respectively. Although the soil multifunctionality was positive correlated with α diversity of both the total and keystone taxa, the average degree of keystone taxa in functional network increased significantly (79.96 and 65.58, respectively), while the average degree of total taxa decreased (44.59 and 51.25, respectively) in the E and I. This suggests keystone taxa contribute to promoting the stability of ecosystems. With increasing disturbance, keystone taxa shift their function from basic metabolism (ribosome biogenesis) to detoxification (xenobiotics biodegradation, metabolism, and benzoate degradation). Here we show that keystone taxa are the most important factor in maintaining stable microbial communities and functions, providing new insights for mitigating pollution stress and soil health protection.


Assuntos
Microbiota , Solo , Microbiologia do Solo , Bactérias/genética , Poluição Ambiental
2.
Nature ; 611(7935): 271-277, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36070797

RESUMO

Conducting polymers (CPs) with high conductivity and solution processability have made great advances since the pioneering work on doped polyacetylene1-3, thus creating the new field of 'organic synthetic metals,4. Various high-performance CPs have been realized, which enable the applications of several organic electronic devices5,6. Nevertheless, most CPs exhibit hole-dominant (p-type) transport behaviour7,8, whereas the development of n-type analogues lags far behind and only a few exhibit metallic state, typically limited by low doping efficiency and ambient instability. Here we present a facilely synthesized highly conductive n-type polymer poly(benzodifurandione) (PBFDO). The reaction combines oxidative polymerization and in situ reductive n-doping, greatly increasing the doping efficiency, and a doping level of almost 0.9 charges per repeating unit can be achieved. The resultant polymer exhibits a breakthrough conductivity of more than 2,000 S cm-1 with excellent stability and an unexpected solution processability without extra side chains or surfactants. Furthermore, detailed investigations on PBFDO show coherent charge-transport properties and existence of metallic state. The benchmark performances in electrochemical transistors and thermoelectric generators are further demonstrated, thus paving the way for application of the n-type CPs in organic electronics.

3.
Chem Sci ; 13(34): 9985-9992, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36128241

RESUMO

Quantum effects such as ferromagnetism were regarded as rare in organic materials. When reduced to radical states, imide-fused polycyclic aromatic hydrocarbons (IPAHs) have shown room-temperature ferromagnetism in our recent work, to be a potential candidate as ferromagnetic semiconductor. Here, we use variational Davydov ansatz parametrized by density functional theory to investigate the structural and optical properties of IPAHs and their radicals at both molecule and aggregate levels. Our calculation reveals that hydrogen mainly gives rise to radicals and proves the formation of a mid-gap polaronic state, which is further evidenced by UV-vis absorption spectra simulations, in good agreement with experiments. The significant change of dispersion between the π-π stacking structure and planar structure implies the formation of radical-radical bonding (pancake bonding), which is revealed by simulations of NIR absorption signals and serves as the physical basis of long-range ferromagnetic orders. Absorption spectra of perylene diimide (PDI), terrylene diimide (TDI) and their radicals are also predicted.

4.
Adv Mater ; 34(14): e2108103, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34997648

RESUMO

The development of pure organic magnets with high Curie temperatures remains a challenging task in material science. Introducing high-density free radicals to strongly interacting organic molecules may be an effective method to this end. In this study, a solvothermal approach with excess hydrazine hydrate is used to concurrently reduce and dissolve rigid-backbone perylene diimide (PDI) crystallites into the soluble dianion species with a remarkably high reduction potential. The as-prepared PDI powders comprising radical anion aggregates are fabricated by a subsequent self-assembly and spontaneous oxidation process. The results of magnetic measurements show that the PDI powders exhibit room-temperature ferromagnetism and a Curie temperature higher than 400 K, with a vast saturation magnetization that reaches ≈1.2 emu g-1 . Elemental analysis along with the diamagnetic signal of the ablated residue are used to rule out the possibility that the magnetism is due to metal contamination. The findings suggest that the long-range ferromagnetic ordering can survive at room-temperature in organic semiconductors, and offers a new optional way to create room-temperature magnetic semiconductors.

5.
Angew Chem Int Ed Engl ; 61(15): e202117433, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35092125

RESUMO

It is generally considered that photoacoustic imaging (PAI) and fluorescence imaging (FLI) cannot be enhanced concurrently, as they are dependent on competitive photophysical processes at the single-molecule level. Herein, we reveal that BDTR9-OC8 and BDTR9-C8, which have identical π-conjugated backbones but are substituted by side chains of different rigidity, show distinct phototheranostic properties in the aggregated state. The NIR-II FLI and PAI brightness of BDTR9-C8 nanoparticles are enhanced by 4.6 and 1.4 times compared with BDTR9-OC8 nanoparticles. Theoretical calculations and GIWAXS analysis revealed that BDTR9-C8 with rigid side chains shows a relative amorphous condensed state, which will benefit the efficient transportation of photo-generated excitons and phonons, subsequently enhancing the FLI and PAI signals. Besides, both nanoparticles exhibit excellent photothermal conversion efficiency due to their strong light-harvesting capability and are considered effective photothermal therapy materials. This work provides an illuminating strategy for material design in the future.


Assuntos
Nanopartículas , Técnicas Fotoacústicas , Nanopartículas/química , Nanotecnologia , Imagem Óptica , Técnicas Fotoacústicas/métodos , Fototerapia , Nanomedicina Teranóstica/métodos
6.
Adv Mater ; 32(45): e2002752, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32924214

RESUMO

Low-cost, non-toxic, abundant organic thermoelectric materials are currently under investigation for use as potential alternatives for the production of electricity from waste heat. While organic conductors reach electrical conductivities as high as their inorganic counterparts, they suffer from an overall low thermoelectric figure of merit (ZT) due to their small Seebeck coefficient. Moreover, the lack of efficient n-type organic materials still represents a major challenge when trying to fabricate efficient organic thermoelectric modules. Here, a novel strategy is proposed both to increase the Seebeck coefficient and achieve the highest thermoelectric efficiency for n-type organic thermoelectrics to date. An organic mixed ion-electron n-type conductor based on highly crystalline and reduced perylene bisimide is developed. Quasi-frozen ionic carriers yield a large ionic Seebeck coefficient of -3021 µV K-1 , while the electronic carriers dominate the electrical conductivity which is as high as 0.18 S cm-1 at 60% relative humidity. The overall power factor is remarkably high (165 µW m-1 K-2 ), with a ZT = 0.23 at room temperature. The resulting single leg thermoelectric generators display a high quasi-constant power output. This work paves the way for the design and development of efficient organic thermoelectrics by the rational control of the mobility of the electronic and ionic carriers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA