Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(12): 6414-6423, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38501560

RESUMO

Previous research has demonstrated that in pregnant mice deficient in l-methionine (Met), the mixture of the dipeptide l-methionyl-l-methionine (Met-Met) with Met was more effective than Met alone in promoting mammogenesis and lactogenesis. This study aimed to investigate the role of a novel long noncoding RNA (lncRNA), named mammary gland proliferation-associated lncRNA (MGPNCR), in these processes. Transcriptomic analysis of mammary tissues from Met-deficient mice, supplemented either with a Met-Met/Met mixture or with Met alone, revealed significantly higher MGPNCR expression in the Met group compared to the mixture group, a finding recapitulated in a mammary epithelial cell model. Our findings suggested that MGPNCR hindered mammogenesis and milk protein synthesis by binding to eukaryotic initiation factor 4B (eIF4B). This interaction promoted the dephosphorylation of eIF4B at serine-422 by enhancing its association with protein phosphatase 2A (PP2A). Our study sheds light on the regulatory mechanisms of lncRNA-mediated dipeptide effects on mammary cell proliferation and milk protein synthesis. These insights underscore the potential benefits of utilizing dipeptides to improve milk protein in animals and potentially in humans.


Assuntos
Fatores de Iniciação em Eucariotos , Metionina , RNA Longo não Codificante , Gravidez , Humanos , Feminino , Animais , Camundongos , Metionina/metabolismo , RNA Longo não Codificante/metabolismo , Dipeptídeos/metabolismo , Racemetionina/metabolismo , Proteínas do Leite/metabolismo , Células Epiteliais/metabolismo , Glândulas Mamárias Animais/metabolismo
2.
J Dairy Sci ; 107(2): 1299-1310, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37777007

RESUMO

During bovine mastitis, immune responses include the release of cytokines and the recruitment of leukocytes, resulting in profound structural and functional changes in the mammary gland. Our aims were to delineate systemic and local cytokine responses and to quantify histological changes in the mammary tissue of lactating cows after acute intramammary lipopolysaccharide (LPS) challenge. Ten multiparous dairy cows were paired to either treatment (TRT) or control (CON) groups. For TRT cows, one side of the udder was randomly assigned to receive treatment with LPS (50 µg in 10 mL of saline, TL) into both the front and rear quarters; the contralateral quarters received saline (10 mL). Udder-halves of CON cows were similarly assigned randomly to receive either saline (10 mL, CS) or no infusion (untreated). Temporal changes in the concentrations of 15 cytokines in the blood (0, 3, 6, 12, and 24 h relative to the LPS infusion) and in mammary tissue (0, 3, and 12 h) were determined, as were concomitant changes in mammary histology. The cytokines IL-6, IL-10, MCP-1, and MIP-1ß showed a systemic response as their concentrations were significantly different in the plasma of TRT cows as compared with CON cows after LPS challenge. The cytokines IL-1α, IL-1ß, IL-6, IL-8, IL-17A, IL-36RA, IP-10, MCP-1, MIP-1α, MIP-1ß, TNF-α, and VEGF-A showed a local response in TL glands, and 8 cytokines, IL-1ß, IL-6, IL-10, IL-17A, IL-36RA, IP-10, MIP-1ß, and VEGF-A showed systemic changes in the nonchallenged mammary glands adjacent to LPS-infused glands. Endotoxin challenge evoked changes in the histology of mammary tissue that included a 5.2- and 7.2-fold increases in the number of neutrophils in alveolar lumens at 3 h and 12 h, respectively. In summary, LPS challenge induced specific local and systemic responses in cytokine induction and elicited neutrophil infiltration in bovine mammary tissue.


Assuntos
Doenças dos Bovinos , Mastite Bovina , Feminino , Bovinos , Animais , Citocinas/análise , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/análise , Lactação , Interleucina-10 , Leite/química , Interleucina-17/análise , Quimiocina CCL4/análise , Quimiocina CXCL10/análise , Interleucina-6 , Fator A de Crescimento do Endotélio Vascular , Glândulas Mamárias Animais
3.
Phys Chem Chem Phys ; 25(5): 3799-3805, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36647743

RESUMO

To obtain atomic-level insights into the decomposition behavior of 1,3,5-trinitro-2,4,6-trinitroaminobenzene (TNTNB) under different stimulations, this study applied reactive molecular dynamics simulations to illustrate the effects of thermal and shock stimuli on the TNTNB crystal. The results show that the initial decomposition of the TNTNB crystal under both thermal and shock stimuli starts with the breakage of the N-NO2 bond. However, the C6 ring in TNTNB undergoes structural rearrangement to form a C3-C5 bicyclic structure at a constant high temperature. Then, the C3 and C5 rings break in turn. The main final products of TNTNB under shock are N2, CO2, and H2O, while NO,  N2, H2O and CO are formed instead at 1 atm under a constant high temperature. Pressure is the main reason for this difference. High pressure promotes the complete oxidation of the reactants.

4.
Front Immunol ; 13: 880578, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572521

RESUMO

The current study was conducted to analyze the functions of blood neutrophils in transition cows and their association with postpartum mastitis risk as indicated by somatic cell counts (SCCs) in milk. Seventy-six healthy Holstein dairy cows were monitored from Week 4 prepartum to Week 4 postpartum. Five dairy cows with low SCCs (38 ± 6.0 × 103/mL) and five with high SCCs (3,753 ± 570.0 × 103/mL) were selected based on milk SCCs during the first three weeks of lactation. At Week 1 pre- and postpartum, serum samples were obtained from each cow to measure neutrophil extracellular trap (NET)-related variables, and blood neutrophils were collected for transcriptome analysis by RNA sequencing. The serum concentration of NETs was significantly higher (P < 0.05) in cows with high SCCs than in cows with low SCCs (36.5 ± 2.92 vs. 18.4 ± 1.73 ng/mL). The transcriptomic analysis revealed that the transcriptome differences in neutrophils between high- and low-SCC cows were mainly in cell cycle-related pathways (42.6%), including the cell cycle, DNA damage, and chromosomal conformation, at Week 1 prepartum. The hub genes of these pathways were mainly involved in both the cell cycle and NETosis. These results indicated that the formation of NETs in the blood of transition dairy cows was different between cows with low and high SCCs, which may be used as a potential indicator for the prognosis of postpartum mastitis risk and management strategies of perinatal dairy cows.


Assuntos
Armadilhas Extracelulares , Mastite Bovina , Animais , Bovinos , Feminino , Humanos , Lactação , Leite , Gravidez
5.
Curr Stem Cell Res Ther ; 17(3): 207-213, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34348628

RESUMO

Adult stem cells like mammary and mesenchymal stem cells have received significant attention because these stem cells possess therapeutic potential in treating many animal diseases. These cells can be administered in an autologous or allogenic fashion, either freshly isolated from the donor tissue or previously cultured and expanded in vitro. The expansion of adult stem cells is a prerequisite before therapeutic application because sufficient numbers are required in dosage calculation. Stem cells directly and indirectly (by secreting various growth factors and angiogenic factors called secretome) act to repair and regenerate injured tissues. Recent studies on mammary stem cells showed in vivo and in vitro expansion ability by removing the blockage of asymmetrical cell division. Compounds like purine analogs (xanthosine, xanthine, and inosine) or hormones (progesterone and bST) help increase stem cell population by promoting cell division. Such methodology of enhancing stem cell number, either in vivo or in vitro, may help in preclinical studies for translational research like treating diseases such as mastitis. The application of mesenchymal stem cells has also been shown to benefit mammary gland health due to the 'homing' property of stem cells. In addition to that, the multiple positive effects of stem cell secretome are on mammary tissue; healing and killing bacteria is novel in the production of quality milk. This systematic review discusses some of the studies on stem cells that have been useful in increasing the stem cell population and increasing mammary stem/progenitor cells. Finally, we provide insights into how enhancing mammary stem cell population could potentially increase terminally differentiated cells, ultimately leading to more milk production.


Assuntos
Células-Tronco Adultas , Leite , Animais , Diferenciação Celular , Feminino , Humanos , Glândulas Mamárias Animais/metabolismo , Leite/metabolismo , Células-Tronco
6.
J Inflamm Res ; 14: 4053-4067, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34456581

RESUMO

INTRODUCTION: Milk depression is the major driver of economic loss due to mastitis in dairy animals. The aim of this study was to identify potential mediators of milk depression by investigating the local and systemic changes in gene expression or cytokine production during endotoxin challenge of the mammary gland in a mouse model. METHODS: The left and right sides of the 4th pair of mouse mammary glands were alternatively injected with either lipopolysaccharide (LPS, Escherichia coli 055: B5, 50 µL of 0.4 mg/mL) or sterile PBS through the teat meatus 3 days postpartum (n = 9). The 4th glands were individually collected 12 h after LPS injection and analyzed to identify gene expression changes by RNA sequencing and real-time PCR, and the plasma was collected before and after LPS challenge and analyzed to determine the levels of 32 cytokines. RESULTS: Transcriptome analysis showed that in addition to strong pro-inflammatory responses, which included granulocyte and monocyte migration and cytokine production and signaling, the LPS-treated glands exhibited strong ubiquitin-mediated and immune-mediated proteasome activation and an increase in nitric oxide-mediated oxidative stress. Furthermore, LPS induced a down-regulation in vesicle membrane, vesicle-mediated trafficking, and metabolic processes of amino acids and other organic molecules in the mammary gland. Of the 32 cytokines analyzed, the levels of 24 (mainly IL-6, G-CSF, MCP-1, RANTES, MIG, MIP-1b, KC, MIP-2, IP-10, and TNFα) were increased or tended to increase in the blood after LPS treatment, and only the levels of IL-9 were decreased. In the mammary gland after LPS challenge, the levels of IL-5, IL-6, IP-10, LIF, MCP-1, MIP-2, and TNFα were significantly increased, and the levels of INFΥ, IL-2, IL-4, IL-10, and IL-12 (p40) were decreased. DISCUSSION: These observations provide potential markers and targets for further studies on the prevention and treatment of gram-negative bacteria-induced mastitis.

7.
J Mol Graph Model ; 108: 107987, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34303180

RESUMO

Adding aluminum hydride (AlH3) into energetic materials (EMs) can improve their combustion and energy performance effectively. However, the potential mechanism of AlH3 on EMs is still unclear. Based on the ReaxFF-lg method, the thermal decomposition of nitromethane/nano-aluminum hydride (NM/nano-AlH3) composites were studied. The addition of AlH3 reduces the energy barrier and increases the energy release during the decomposition of NM, accelerates the decomposition of NM. The main way of AlH3 oxidation involves the capture of O atoms from NM. The results show that AlH3 content and passivated layer affect the oxidation and hydrogen release of AlH3. The explosion of small particle size AlH3 leads to rapid oxidation and hydrogen release. The oxidation of large particle size AlH3 is dominated by the inward and outward diffusion of O and Al atoms. The products of NM/nano-AlH3 composites are H2O, CO2, N2 gases, and Al clusters. This work is expected to guide the application of AlH3 in EMs.


Assuntos
Metano , Nitroparafinas , Hidrogênio , Metano/análogos & derivados , Tamanho da Partícula
8.
Phys Chem Chem Phys ; 23(20): 11886-11892, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33989368

RESUMO

Metal nanoparticles are easily deactivated by migration-aggregation in combustion. Encapsulated nanoparticles are one of the tools for coping with the stability challenges of metal nanoparticles. The self-assembly details of aluminum nanoparticles (ANPs) encapsulated into carbon nanotubes (CNTs) were demonstrated by molecular dynamics simulations. The simulation results show that ANPs can completely self-roll into CNTs to form a stable core-shell structure by inertial force and van der Waals force. Inside the tubes, ANPs move toward the cap at a velocity of 2.27 Å ps-1. However, it increases to 3.17 Å ps-1 when near the cap of CNTs. The initiation of the ANPs' oxidation and degradation can be effectively checked by coating CNTs. The diffusion of the Al atoms in the encapsulated ANPs occurred earlier than their oxidation in combustion, verified by using ReaxFF molecular dynamics simulations. The morphological evolutions of the nanostructures in the initial combustion of the encapsulated ANPs are predicted. The interplay between the encapsulated ANPs' responses and external stimuli is classified into core-shell separation, shell damage, and core-shell burst, which provides insights into the oxidation mechanism of encapsulated nanoparticles.

9.
Oxid Med Cell Longev ; 2021: 8821833, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33505589

RESUMO

The incidence of mastitis is high during the postpartum stage, which causes severe pain and hinders breast feeding in humans and reduces milk production in dairy cows. Studies suggested that inflammation in multiple organs is associated with oxidative stress and nuclear factor E2-related factor 2 (Nrf2)-antioxidant response element pathway is one of the most important antioxidant pathways, but the effects of Nrf2 on antioxidation in the mammary gland during mastitis are still unclear. In this study, intramammary lipopolysaccharide (LPS) challenge was carried out in wild-type (WT) and Nrf2 knockout mice. Results showed that the expression of Nrf2 affected the expression of milk protein genes (Csn2 and Csn3). Importantly, LPS treatment increased the expression of Nrf2 and HO-1 and the content of glutathione in the mammary gland of WT mice, but not in Nrf2(-/-) mice. The expression levels of glutathione synthesis genes (GCLC, GCLM, and xCT) were lower in Nrf2(-/-) mice than in WT mice. Moreover, mitochondrial-dependent apoptotic and endoplasmic reticulum stress were significantly relieved in WT mice compared with that in Nrf2(-/-) mice. In summary, the expression of Nrf2 may play an important role in prevention of oxidative and organelle stresses during endotoxin-induced mastitis in mouse mammary gland.


Assuntos
Elementos de Resposta Antioxidante , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Neoplasias Mamárias Experimentais/prevenção & controle , Fator 2 Relacionado a NF-E2/fisiologia , Organelas/patologia , Estresse Oxidativo , Animais , Feminino , Inflamação/etiologia , Inflamação/metabolismo , Neoplasias Mamárias Experimentais/induzido quimicamente , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Organelas/metabolismo
10.
J Mol Model ; 26(11): 300, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33052478

RESUMO

The thermal decomposition of pure nitromethane (NM) and NM/nano-aluminum (Al) composites was simulated by reactive molecular dynamics with ReaxFF-lg corrected force field parameters. The initial decomposition pathway of NM molecules in pure NM is C-N bond rupture. However, NM is decomposed early by the initial pathway of N-O bond rupture when it mixes with nano-Al because of the strong attraction of Al to O. The decomposition process of NM/nano-Al can be divided into three stages: adsorption, slow decomposition, and rapid decomposition. The addition of nano-Al particles decreases the energy barrier in decomposition, increases the released energy, and reduces the decomposition temperature of NM. Adding 3% Al to the explosive can make the detonation pressure 3.083% higher than that of pure system. Compared with pure NM, the energy barrier of 16% Al composite is 25.63 kcal/mol lower and the energy released is 22.99 kcal/mol more. There is an optimal amount of Al contents being added to the NM composite by which the largest total numbers of gaseous products (N2, H2O, and CO2) are released. The effect of Al additives on CO2 production is the most obvious. The maximum detonation pressure can be achieved by adding an appropriate amount of nano-Al, which is similar to the experimental results. Graphical abstract.

11.
ACS Omega ; 5(36): 23193-23200, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32954170

RESUMO

ReaxFF-low-gradient reactive force field with CHONAl parameters is used to simulate thermal decomposition of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) and AlH3 composite. Perfect AlH3 and surface-passivated AlH3 particles were constructed to mix with HMX. The simulation results indicate HMX is adsorbed on the surface of particles to form O-Al and N-Al bonds. The decomposition of HMX and AlH3 composite is an exothermic reaction without energy barrier, but the decomposition of pure HMX needs to overcome the energy barrier of 133.57 kcal/mol. Active nano-AlH3 causes HMX to decompose rapidly at low temperature, and the primary decomposition pathway is the rupture of N-O and C-N bonds. Adiabatic simulation shows that the energy release and temperature increase of HMX/AlH3 is much larger than those of the HMX system. Surface-passivated AlH3 particles only affect the initial decomposition rate of HMX. In HMX and AlH3 composites, the strong attraction of Al in AlH3 to O and the activation of the intermediate reaction by H2 cause HMX to decompose rapidly. The final decomposition products of pure HMX are H2O, N2, and CO2, and those of HMX/AlH3 are H2O, N2, and Al-containing clusters dominated by C-Al. The final gas production shows that the specific impulse of HMX/AlH3 is larger than that of HMX.

12.
J Mol Model ; 26(8): 213, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32696175

RESUMO

The spiral growth model was applied to predict the crystal morphology of 2,2',4,4',6,6'-hexanitrostilbene (HNS). We selected solvents of N,N-dimethylformamide (DMF), N-methyl pyrrolidone (NMP), and nitric acid (NA) to control the crystal morphologies of HNS. Molecular dynamic simulations were used to relax the constructed interface model. The relative growth rate of important face is calculated by the spiral growth expression. The predicted crystal shapes are flaky in three solvents. Only (100), (001), and (011) faces are generated in DMF, NMP, and NA. The aspect ratios of the predicted HNS crystal morphologies in DMF, NMP, and NA are 23.00, 15.45, and 4.85, respectively. In addition, we analyzed the properties on each face using periodic bond chain, molecular arrangement, and roughness model. The excellent agreement between the predicted morphologies and the experimental images is clearly evident. These simulation results can provide guidance for the recrystallization of HNS. Graphical abstract.

13.
J Dairy Sci ; 103(7): 6679-6683, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32331895

RESUMO

Bovine peptide transporter 2 (bPepT2), which mediates the absorption of di- and tripeptides in the bovine mammary gland, was predicted to contain multiple putative N-glycosylation sites of asparagine residues. N-Linked glycosylation is proven to be essential for the folding, stability, localization, and substrate binding of nutrient transporters and could therefore potentially have an essential role in the function of bPepT2. This study investigated the effect of mutagenesis of N-glycosylation sites on the transport function of bPepT2 in Chinese hamster ovary (CHO) cells. The bPepT2 cDNA was cloned and sequenced. BioXM (http://202.195.246.60/BioXM/) and TMHMM (http://www.cbs.dtu.dk/services/TMHMM-2.0/) software were used to predict the AA composition and transmembrane domain of bPepT2, respectively. The AA sequence of bPepT2 was predicted to have 12 transmembrane domains, with a large extracellular loop between the ninth and tenth transmembrane domains. All 5 putative N-glycosylation sites in this loop were altered by site-directed mutagenesis, and the mutant construct was transfected into CHO cells for transport activity assay. Compared with the wild type, the bPepT2 mutant had significantly lower uptake activity of ß-alanyl-l-lysyl-Nε-7-amino-4-methyl-coumarin-3-acetic acid (ß-Ala-Lys-AMCA), a model dipeptide. Treatment with tunicamycin, an inhibitor of N-linked glycosylation, reduced the uptake of ß-Ala-Lys-AMCA in CHO cells relative to the control group. Kinetic studies indicated that the Michaelis constant of bPepT2 was not affected by the mutation (98.03 ± 8.30 and 88.33 ± 4.23 µM for the wild type and the mutant, respectively), but the maximum transport activity was significantly reduced (40.29 ± 8.30 and 13.02 ± 2.95 pmol/min per milligram of protein for the wild type and the mutant, respectively). In summary, this study demonstrated that N-glycosylation is critical for the function of bPepT2.


Assuntos
Bovinos/metabolismo , Simportadores/fisiologia , Animais , Células CHO , Bovinos/genética , Cricetulus , Glicosilação , Mutagênese Sítio-Dirigida , Transporte Proteico/efeitos dos fármacos , Simportadores/genética , Transfecção , Tunicamicina/farmacologia
14.
Oxid Med Cell Longev ; 2020: 3894309, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32273941

RESUMO

The aim of this study was to investigate the mechanisms underlying the reduced milk production during mastitis. We hypothesized that bacterial endotoxin induces hypoxia, oxidative stress, and cell apoptosis while inhibiting milk gene expression in the mammary gland. To test this hypothesis, the left and right sides of the 4th pair of mouse mammary glands were alternatively injected with either lipopolysaccharide (LPS, E. coli 055: B5, 100 µL of 0.2 mg/mL) or sterile PBS through the teat meatus 3 days postpartum. At 10.5 and 22.5 h postinjection, pimonidazole HCl, a hypoxyprobe, was injected intraperitoneally. At 12 or 24 h after the LPS injection, the 4th glands were individually collected (n = 8) and analyzed. LPS treatment induced mammary inflammation at both 12 and 24 h but promoted cell apoptosis only at 12 h. Consistently, H2O2 content was increased at 12 h (P < 0.01), but dropped dramatically at 24 h (P < 0.01) in the LPS-treated gland. Nevertheless, the total antioxidative capacity in tissue tended to be decreased by LPS at both 12 and 24 h (P = 0.07 and 0.06, respectively). In agreement with these findings, LPS increased or tended to increase the mRNA expression of antioxidative genes Nqo1 at 12 h (P = 0.05) and SLC7A11 at 24 h (P = 0.08). In addition, LPS inhibited mammary expression of Csn2 and Lalba across time and protein expression of Csn1s1 at 24 h (P < 0.05). Furthermore, hypoxyprobe staining intensity was greater in the alveoli of the PBS-treated gland than the LPS-treated gland at both 12 and 24 h, demonstrating a rise in oxygen tension by LPS treatment. In summary, our observations indicated that while intramammary LPS challenge incurs inflammation, it induces oxidative stress, increases cell apoptosis and oxygen tension, and differentially inhibits the milk protein expression in the mammary gland.


Assuntos
Hipóxia Celular/fisiologia , Endotoxinas/efeitos adversos , Escherichia coli/patogenicidade , Glândulas Mamárias Animais/fisiologia , Proteínas do Leite/metabolismo , Estresse Oxidativo/fisiologia , Animais , Feminino , Camundongos
15.
J Anim Sci Biotechnol ; 11: 32, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32166025

RESUMO

BACKGROUND: The local supply of energy-yielding nutrients such as glucose seems to affect the synthesis of milk components in the mammary gland (MG). Thus, our study was conducted to investigate the effects of locally available MG glucose supply (LMGS) on amino acid (AA) sensing and utilization in the MG of lactating dairy goats. Six dosages of glucose (0, 20, 40, 60, 80, and 100 g/d) were infused into the MG through the external pudendal artery to investigate the dose-dependent changes in mammary AA uptake and utilization (Exp.1) and the changes in mRNA and protein expression of the AMPK-mTOR pathway (Expt.2). RESULTS: In Exp.1, total milk AA concentration was highest when goats were infused with 60 g/d glucose, but lower when goats were infused with 0 and 100 g/d glucose. Increasing LMGS quadratically changed the percentages of αS2-casein and α-lactalbumin in milk protein, which increased with infusions from 0 to 60 g/d glucose and then decreased with infusions between 60 and 100 g/d glucose. The LMGS changed the AA availability and intramammary gland AA utilization, as reflected by the mammary AA flux indexes. In Exp.2, the mRNA expression of LALBA in the MG increased quadratically with increasing LMGS, with the highest expression at dose of 60 g/d glucose. A high glucose dosage (100 g/d) activated the general control nonderepressible 2 kinase, an intracellular sensor of AA status, resulting in a reduced total milk AA concentration. CONCLUSIONS: Our new findings suggest that the lactating MG in dairy goats may be affected by LMGS through regulation of the AA sensory pathway, AA utilization and protein synthesis, all being driven by the AMPK-mTOR pathway.

16.
J Nutr ; 150(5): 1186-1195, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32006013

RESUMO

BACKGROUND: Pregnancy-induced hypoaminoacidemia, l-methionine (Met) included, disturbs embryogenesis and may also affect breast function. Supplementation with the dipeptide l-methionyl-Met (Met-Met) may improve lactation performance. OBJECTIVE: We compared the effects of supplemental Met or Met-Met during pregnancy on mammogenesis and lactogenesis and investigated underlying mechanisms. METHODS: In experiment 1, 9-wk-old ICR mice (n = 72, ∼30 g) were divided into 3 groups. During the first 17 days of pregnancy (DP), the Control group was fed a diet with Met (8.2 g/kg) and saline was intraperitoneally injected, the Met group was fed a Met-devoid diet and 35% of the Met (92-mmo l Met) as contained in the Control diet was intraperitoneally injected, and the Met-Met group was fed the same diet and 70-mmo l Met plus 11-mmo l Met-Met was intraperitoneally injected. All animals were fed the Control diet after DP17 and during lactation. Mammogenesis, lactogenesis, transcriptome at DP17, and milk performance during lactation were examined. In experiment 2, 9-wk-old ICR mice (n = 55, ∼30 g) at DP0 were injected through the teat with adeno-associated virus for overexpression/inhibition of phosphoinositide-3-kinase regulatory subunit 1 (Pik3r1), divided into the Control, Met, and Met-Met groups and received the same treatment as experiment 1 to examine mammogenesis and lactogenesis at DP17. RESULTS: In experiment 1, compared with the Met group, the Met-Met group showed higher (P < 0.05) mammary epithelium percentage (42%) and αS1-casein expression (84%) at DP17, milk yield (34%) and energy concentrations (8.7%) during lactation; transcriptomic analysis illustrated activated phosphatidylinositol-3 kinase (PI3K)/protein kinase B (AKT) signaling in the mammary glands of the Met-Met group (P-adj < 0.001). In experiment 2, overexpression of Pik3r1 enhanced (P < 0.05) the protective effect of Met-Met over Met on mammogenesis and ß-casein expression. CONCLUSION: Met-Met is more effective than Met in promoting mammogenesis and lactogenesis mainly by activation of PI3K-AKT signaling in Met-deficient mice.


Assuntos
Dipeptídeos/administração & dosagem , Lactação/efeitos dos fármacos , Glândulas Mamárias Animais/crescimento & desenvolvimento , Metionina/deficiência , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Animais Recém-Nascidos/crescimento & desenvolvimento , Dieta , Feminino , Lactação/fisiologia , Glândulas Mamárias Animais/efeitos dos fármacos , Metionina/administração & dosagem , Camundongos , Camundongos Endogâmicos ICR , Leite/química , Gravidez , Transdução de Sinais/efeitos dos fármacos
17.
Sci Rep ; 10(1): 2317, 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32047205

RESUMO

Temperature-induced morphological changes are one of the strategies for designing crystal shapes, but the role of temperature in enhancing or inhibiting crystal growth is not well understood yet. To meet the requirements of high density and low sensitivity, we need to control the crystal morphology of the energetic materials. We studied the crystal morphology of 1,1-diamino-2,2-dinitroethylene (FOX-7) in dimethyl sulfoxide/water mixed solvent by using the modified Hartman-Perdok theorem. Molecular dynamics simulations were used to determine the interaction of FOX-7 and solvents. The results showed that the crystal shape of FOX-7 is hexagonal, the (101) face is the largest exposed face and is adjacent to six crystal faces at 354 K. As the temperature goes down, the area of the (001) face is significantly reduced. The crystal morphology of FOX-7 at 324 K has a smaller aspect ratio of 4.72, and this temperature is suitable for tuning the morphology from slender hexagon into diamond. The prediction results are in remarkable agreement with the experiments. Moreover, we predicted the evolution path of FOX-7 morphology by Gibbs-Curie-Wulff theorem and explained the variation of crystal shape caused by different external conditions in the actual crystallization process.

18.
RSC Adv ; 10(9): 5507-5515, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35498296

RESUMO

2,2',2'',4,4',4'',6,6',6''-Nonanitro-1,1':3',1''-terphenyl (NONA) is currently recognized as an excellent heat-resistant explosive. To improve the atomistic understanding of the thermal decomposition paths of NONA, we performed a series of reactive force field (ReaxFF) molecular dynamics simulations under extreme conditions of temperature and pressure. The results show that two distinct initial decomposition mechanisms are the homolytic cleavage of the C-NO2 bond and nitro-nitrite (NO2 → ONO) isomerization followed by NO fission. Bimolecular and fused ring compounds are found in the subsequent decomposition of NONA. The product identification analysis under finite time steps showed that the gaseous products are CO2, N2, and H2O. The amount of CO2 is energetically more favorable for the system at high temperature or low density. The carbon-containing clusters are a favorable growth pathway at low temperatures, and this process was further demonstrated by the analysis of diffusion coefficients. The increase of the crystal density accelerates the decomposition of NONA judged by the analysis of reaction kinetic parameters and activation barriers. In the endothermic and exothermic stages, a 20% increase in NONA density increases the activation energies by 3.24 and 0.48 kcal mol-1, respectively. The values of activation energies (49.34-49.82 kcal mol-1) agree with the experimental data in the initial decomposition stage.

19.
J Mol Model ; 25(12): 373, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31792617

RESUMO

According to the experiments, DNTF crystallizes in benzene/methylbenzene (1:1), benzene/methylbenzene/ethanol (2:3:5), and sym-dichloroethane solvents into two similar crystal shapes, namely strip and tetrahedral. There is a possibility that solvent changes the crystal morphology. In order to explain this phenomenon, the DNTF growth interface model was constructed according to the actual solution environment. The interaction energy between the solvent phase and the DNTF crystal face was studied by means of molecular dynamics simulation. The crystal morphology of DNTF was predicted using the classical modified attachment energy model (MAE) in benzene, methylbenzene, benzene/methylbenzene (1:1), benzene/methylbenzene/ethanol (2:3:5), and sym-dichloroethane. The results show that the DNTF growths are mainly dominated by the (011), (001), (101), (110), (111), and (11[Formula: see text]) faces in vacuum. However, only a few faces will remain in the solvents, of which the (011) and (101) faces are exposed in benzene, methylbenzene, and benzene/methylbenzene (1:1), and only the (111) faces constitute the crystal shape of the DNTF in benzene/methylbenzene/ethanol (2:3:5) and sym-dichloroethane. The predicted results successfully explained the observed phenomena in the experiment. The simulation results can provide some guidance for the crystallization process of DNTF.

20.
J Mol Graph Model ; 92: 303-312, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31434035

RESUMO

A computational strategy in consideration of attachment energy, temperature, solubility and supersaturation unravels details of the solvent effect on the crystal morphology. The crystal morphologies were predicted by the advanced screw dislocation growth model. This research sheds much light on the crystal growth mechanisms with the example of 3,4-bis(3-nitrofurazan-4-yl)furoxan (DNTF) in ethanol. The solvation model based on the experiment situation was established into periodic supercell. Molecular dynamics simulation was performed for obtaining the adsorption energy at the equilibrium state of the interface layer. The growth characteristics of relevant growth faces are introduced. At the same time, a periodic bond chains analysis can be applied to the existence and evolution of crystal growth units. The prediction results are in remarkable agreement with the experimental results. We found that crystal morphology of DNTF is composed of (002), (111), (111¯) and (101) faces in ethanol. As the saturation temperature rises, the (101) face becomes smaller and eventually disappears.


Assuntos
Cristalização , Etanol/química , Modelos Teóricos , Simulação de Dinâmica Molecular , Nitrofurazona/análogos & derivados , Oxidiazóis/química , Algoritmos , Nitrofurazona/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA