Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Int Immunopharmacol ; 132: 111900, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38531200

RESUMO

The precise mechanism of ferroptosis as a regulatory cell death in intestinal ischemia injury induced by vascular intestinal obstruction (Vio) remains to be elucidated. Here, we evaluated iron levels, glutathione peroxidase 4 (GPX4) and Acyl-CoA synthetase long-chain family member 4 (ACSL4) changes after intestinal ischemia injury to validate ferroptosis. As an enzyme for Fe3+ reduction to Fe2+, Ferric Chelate Reductase 1 (FRRS1) is involved in the electron transport chain and the tricarboxylic acid (TCA) cycle in mitochondria. However, whether it is involved in ferroptosis and its role in intestinal ischemia injury need to be clarified. In the present study, FRRS1 was overexpressed in vivo and in vitro. The results showed that overexpression of FRRS1 prevented ischemia-induced iron levels, reactive oxygen species (ROS) production, lipid peroxidation, inflammatory responses, and cell death. Meanwhile, FRRS1 overexpression promoted GPX4 expression and suppressed ACSL4 levels. Further studies revealed that FRRS1 overexpression inhibited the activity of large tumor suppressor 1 (LATS1) / Yes-associated protein (YAP) / transcriptional co-activator with PDZ-binding motif (TAZ), a key component of Hippo signaling. In conclusion, this study demonstrates that FRRS1 is intimately involved in the inhibition of ferroptosis and thus protection of the intestine from intestinal ischemia injury, its downstream mechanism was related to Hippo signaling. These data provide new sight for the prevention and treatment of intestinal ischemia injury.


Assuntos
Coenzima A Ligases , Ferroptose , Via de Sinalização Hippo , Intestinos , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Animais , Camundongos , Masculino , Coenzima A Ligases/metabolismo , Coenzima A Ligases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Intestinos/patologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Isquemia/metabolismo , Proteínas de Sinalização YAP/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Humanos
2.
BMC Genomics ; 24(1): 750, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057756

RESUMO

BACKGROUND: Improving the egg production of goose is a crucial goal of breeding, because genetics is the key factor affecting egg production. Thus, we sequenced the genomes of 55 Chinese indigenous geese from six breeds, which were divided into the high egg-laying group (ZE, HY, and SC) and low egg-laying group (ZD, LH, and ST). Based on the results of the inter-population selection signal analysis, we mined the selected genome regions in the high egg-laying germplasm population to identify the key candidate genes affecting the egg-laying traits. RESULTS: According to the whole-genome sequencing data, the average sequencing depth reached 11.75X. The genetic relationships among those six goose breeds coincided with the breed's geographical location. The six selective signal detection results revealed that the most selected regions were located on Chr2 and Chr12. In total, 12,051 single-nucleotide polymorphism (SNP) sites were selected in all six methods. Using the enrichment results of candidate genes, we detected some pathways involved in cell differentiation, proliferation, and female gonadal development that may cause differences in egg production. Examples of these pathways were the PI3K-Akt signaling pathway (IGF2, COMP, and FGFR4), animal organ morphogenesis (IGF2 and CDX4), and female gonad development (TGFB2). CONCLUSION: On analyzing the genetic background of six local goose breeds by using re-sequencing data, we found that the kinship was consistent with their geographic location. 107 egg-laying trait-associated candidate genes were mined through six selection signal analysis. Our study provides a critical reference for analyzing the molecular mechanism underlying differences in reproductive traits and molecular breeding of geese.


Assuntos
Gansos , Fosfatidilinositol 3-Quinases , Animais , Feminino , Gansos/genética , Fosfatidilinositol 3-Quinases/genética , Oviposição , Genoma , Polimorfismo de Nucleotídeo Único
3.
Bio Protoc ; 13(19): e4835, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37817907

RESUMO

B cells play a critical role in host defense, producing antibodies in response to microbial infection. An inability to produce an effective antibody response leaves affected individuals prone to serious infection; therefore, proper B-cell development is essential to human health. B-cell development begins in the bone marrow and progresses through various stages until maturation occurs in the spleen. This process involves several sequential, complex events, starting with pre- and pro-B cells, which rearrange the heavy and light chain genes responsible for producing clonally diverse immunoglobulin (Ig) molecules. These cells then differentiate into immature B cells, followed by mature B cells. The bone marrow is a complex ecological niche of supporting stromal cells, extracellular matrix components, macrophages, and hematopoietic precursor cells influencing B-cell development, maturation, and differentiation. Once fully mature, B cells circulate in peripheral lymphoid organs and can respond to antigenic stimuli. As specific cell surface markers are expressed during each stage of B-cell development, researchers use flow cytometry as a powerful tool to evaluate developmental progression. In this protocol, we provide a step-by-step method for bone marrow isolation, cell staining, and data analysis. This tool will help researchers gain a deeper understanding of the progression of B-cell development and provide a pertinent flow gating strategy.

4.
Front Endocrinol (Lausanne) ; 14: 1144258, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37008941

RESUMO

Background: Osteoarthritis (OA) is one of the most prevalent chronic diseases, leading to degeneration of joints, chronic pain, and disability in the elderly. Little is known about the role of immune-related genes (IRGs) and immune cells in OA. Method: Hub IRGs of OA were identified by differential expression analysis and filtered by three machine learning strategies, including random forest (RF), least absolute shrinkage and selection operator (LASSO), and support vector machine (SVM). A diagnostic nomogram model was then constructed by using these hub IRGs, with receiver operating characteristic (ROC) curve, decision curve analysis (DCA), and clinical impact curve analysis (CICA) estimating its performance and clinical impact. Hierarchical clustering analysis was then conducted by setting the hub IRGs as input information. Differences in immune cell infiltration and activities of immune pathways were revealed between different immune subtypes. Result: Five hub IRGs of OA were identified, including TNFSF11, SCD1, PGF, EDNRB, and IL1R1. Of them, TNFSF11 and SCD1 contributed the most to the diagnostic nomogram model with area under the curve (AUC) values of 0.904 and 0.864, respectively. Two immune subtypes were characterized. The immune over-activated subtype showed excessively activated cellular immunity with a higher proportion of activated B cells and activated CD8 T cells. The two phenotypes were also seen in two validation cohorts. Conclusion: The present study comprehensively investigated the role of immune genes and immune cells in OA. Five hub IRGs and two immune subtypes were identified. These findings will provide novel insights into the diagnosis and treatment of OA.


Assuntos
Dor Crônica , Osteoartrite , Humanos , Osteoartrite/diagnóstico , Osteoartrite/genética , Área Sob a Curva , Linfócitos B , Análise por Conglomerados
5.
Elife ; 112022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36542058

RESUMO

Class switch recombination generates distinct antibody isotypes critical to a robust adaptive immune system, and defects are associated with autoimmune disorders and lymphomagenesis. Transcription is required during class switch recombination to recruit the cytidine deaminase AID-an essential step for the formation of DNA double-strand breaks-and strongly induces the formation of R loops within the immunoglobulin heavy-chain locus. However, the impact of R loops on double-strand break formation and repair during class switch recombination remains unclear. Here, we report that cells lacking two enzymes involved in R loop removal-senataxin and RNase H2-exhibit increased R loop formation and genome instability at the immunoglobulin heavy-chain locus without impacting its transcriptional activity, AID recruitment, or class switch recombination efficiency. Senataxin and RNase H2-deficient cells also exhibit increased insertion mutations at switch junctions, a hallmark of alternative end joining. Importantly, these phenotypes were not observed in cells lacking senataxin or RNase H2B alone. We propose that senataxin acts redundantly with RNase H2 to mediate timely R loop removal, promoting efficient repair while suppressing AID-dependent genome instability and insertional mutagenesis.


The immune system is a complex network of cells and molecules, which helps to protect the body from invaders. The adaptive immune system can recognise millions of assailants, kill them, and 'learn' from this experience to mount an even quicker defence the next time the body is infected. To achieve this level of protection, specific immune cells, called B cells, divide when they come into contact with a molecule from a foreign particle, the antigen. The cloned B cells then produce millions of protective proteins, the antibodies, which patrol the blood stream and tag harmful particles for destruction. An antibody resembles a Y-shaped structure that contains a 'variable' region, which gives it the specificity to interact with an antigen, and a 'constant' region, which interacts with components of the immune system and determines the mechanisms used to destroy a pathogen. Based on the constant region, antibodies can be divided into five main classes. B cells are able to switch their production from one antibody class to another in an event known as class switch recombination, by making changes to the constant region. They do this by cutting out a portion of the genes for the constant region from their DNA and fusing the remaining DNA. The resulting antibodies still recognise the same target, but interact with different components of the immune system, ensuring that all the body's forces are mobilised. R-loops are temporary structures that form when a cell 'reads' the instructions in its DNA to make proteins. R-loops provide physical support by anchoring the transcription template to the DNA. They help control the activity of genes, but if they stay on the DNA for too long they could interfere with any form of. DNA repair ­ including the cutting and fusing mechanisms during class switch recombination. To find out more about this process, Zhao et al. used B-cells from mice lacking two specific proteins that usually help to remove R-loops. Without these proteins, the B cells generated more R-loops than normal. Nevertheless, the B-cells were able to undergo class switch recombination, even though their chromosomes showed large areas of DNA damage, and DNA sections that had been repaired contained several mistakes. Errors that occur during class switch recombination have been linked to immune disorders and B cell cancers. The study of Zhao et al. shows that even if R-loops do not affect some processes in B cells, they could still impact the overall health of their DNA. A next step would be to test if an inability to remove R-loops could indeed play a role in immune disorders and B-cell cancers.


Assuntos
Recombinação Genética , Ribonucleases , Humanos , Ribonucleases/genética , Switching de Imunoglobulina/genética , Endorribonucleases/genética , Isotipos de Imunoglobulinas/genética , Instabilidade Genômica , Citidina Desaminase/genética
6.
Curr Issues Mol Biol ; 44(2): 483-497, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35723319

RESUMO

Sheep testes undergo a dramatic rate of development with structural changes during pre-sexual maturity, including the proliferation and maturation of somatic niche cells and the initiation of spermatogenesis. To explore this complex process, 12,843 testicular cells from three males at pre-sexual maturity (three-month-old) were sequenced using the 10× Genomics ChromiumTM single-cell RNA-seq (scRNA-seq) technology. Nine testicular somatic cell types (Sertoli cells, myoid cells, monocytes, macrophages, Leydig cells, dendritic cells, endothelial cells, smooth muscle cells, and leukocytes) and an unknown cell cluster were observed. In particular, five male germ cell types (including two types of undifferentiated spermatogonia (Apale and Adark), primary spermatocytes, secondary spermatocytes, and sperm cells) were identified. Interestingly, Apale and Adark were found to be two distinct states of undifferentiated spermatogonia. Further analysis identified specific marker genes, including UCHL1, DDX4, SOHLH1, KITLG, and PCNA, in the germ cells at different states of differentiation. The study revealed significant changes in germline stem cells at pre-sexual maturation, paving the way to explore the candidate factors and pathways for the regulation of germ and somatic cells, and to provide us with opportunities for the establishment of livestock stem cell breeding programs.

7.
Materials (Basel) ; 15(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35629684

RESUMO

This paper focused on the microstructure evolution under different thermal aging times at 650 °C and its effect on creep behavior in 11Cr-3W-3Co heat-resistant steel. After short-term thermal aging at 650 °C (>750 h), a Laves phase was found in the regions adjacent to the PAG boundaries, martensitic lath boundaries, and M23C6 carbides, and gradually swallowed adjacent M23C6 carbides with the aging time increased. Higher contents of Si and P are good promoters of the nucleation of the Laves phase during long-term aging. In addition, the coarsening behavior of the Laves phase, M23C6, and MX were investigated. As the aging time increases, the coarsening behavior among precipitated phases in the above-mentioned example exhibits remarkable variability, which is discussed in detail in this paper, and the evolution of the subgrain size was also analyzed in detail. The increasing rate of subgrain size is, in general, consistent with that of the M23C6 carbide size. The evolution of dislocation density in different aging times shows an obvious difference, and the decreasing rate of dislocation density is significantly affected by the precipitated phase after long-term aging time. The creep performance of the material decreases significantly as the aging time increases, which is closely related to the coarsening of the precipitates such as M23C6 carbides and subgrain during long-term aging.

8.
Materials (Basel) ; 15(8)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35454540

RESUMO

The precipitation and growth mechanism of the Laves phase and the coarsening behaviors of Laves phase, M23C6 and MX carbonitrides have been emphatically investigated in P91 steel at 625 °C under different aging conditions. After long-term aging at 625 °C (>1500 h), it was observed that the Laves phase grew rapidly in the region near the M23C6 carbide once precipitated, and further gradually completed the engulfment process until the M23C6 carbide particles disappeared. Furthermore, a new crystallographic orientation relationship between M23C6 carbides and Laves phase has been observed at 625 °C for 5000 h, which is {0001}Laves∥{111}M23C6, <112¯1>Laves∥ <011>M23C6. The coarsening behaviors of Laves phase, M23C6 carbides and MX carbonitrides have been emphatically investigated, conforming to the existing ripening model of multicomponent alloys. The coarsening rates for the Laves phase, M23C6 and MX have values of ~32.2 (≥5000 h), 5.3 and 0.6 nm/h1/3, respectively.

9.
Front Genet ; 13: 846449, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35480318

RESUMO

Dorper sheep (Ovis aries) (DPS), developed in the 1930s by crossing Dorset Horn and Blackhead Persian sheep in South Africa, is a world-famous composite breed for mutton production. The genetic basis underlying this breed is yet to be elucidated. Here, we report the sequencing and assembly of a highly contiguous Dorper sheep genome via integration of Oxford Nanopore Technology (ONT) sequencing and Hi-C (chromatin conformation capture) approaches. The assembled genome was around 2.64 Gb with a contig N50 of 73.33 Mb and 140 contigs in total. More than 99.5% of the assembled sequences could be anchored to 27 chromosomes and they were annotated with 20,450 protein-coding genes. Allele-specific expression (ASE) genes of Dorper sheep were revealed through ASE analysis and they were involved in the immune system, lipid metabolism, and environmental adaptation. A total of 5,701 and 456 allelic sites were observed in the SNP and indels loci identified from relevant whole-genome resequencing data. These allelic SNP and INDEL sites were annotated in 1,002 and 294 genes, respectively. Moreover, we calculated the number of variant sites and related genes derived from the maternal and paternal ancestors, revealing the genetic basis of outstanding phenotypic performance of Dorper sheep. In conclusion, this study reports the first reference genome of Dorper sheep and reveals its genetic basis through ASE. This study also provides a pipeline for mining genetic information of composite breeds, which has an implication for future hybrid-breeding practices.

10.
Nucleic Acids Res ; 50(4): 2051-2073, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35100392

RESUMO

Conflicts between transcription and replication machinery are a potent source of replication stress and genome instability; however, no technique currently exists to identify endogenous genomic locations prone to transcription-replication interactions. Here, we report a novel method to identify genomic loci prone to transcription-replication interactions termed transcription-replication immunoprecipitation on nascent DNA sequencing, TRIPn-Seq. TRIPn-Seq employs the sequential immunoprecipitation of RNA polymerase 2 phosphorylated at serine 5 (RNAP2s5) followed by enrichment of nascent DNA previously labeled with bromodeoxyuridine. Using TRIPn-Seq, we mapped 1009 unique transcription-replication interactions (TRIs) in mouse primary B cells characterized by a bimodal pattern of RNAP2s5, bidirectional transcription, an enrichment of RNA:DNA hybrids, and a high probability of forming G-quadruplexes. TRIs are highly enriched at transcription start sites and map to early replicating regions. TRIs exhibit enhanced Replication Protein A association and TRI-associated genes exhibit higher replication fork termination than control transcription start sites, two marks of replication stress. TRIs colocalize with double-strand DNA breaks, are enriched for deletions, and accumulate mutations in tumors. We propose that replication stress at TRIs induces mutations potentially contributing to age-related disease, as well as tumor formation and development.


Assuntos
Linfócitos B/metabolismo , Replicação do DNA , Instabilidade Genômica , Animais , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Replicação do DNA/genética , Camundongos , Transcrição Gênica
11.
Front Immunol ; 13: 1076784, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36591232

RESUMO

As the first barrier of host defense, innate immunity sets up the parclose to keep out external microbial or virus attacks. Depending on the type of pathogens, several cytoplasm pattern recognition receptors exist to sense the attacks from either foreign or host origins, triggering the immune response to battle with the infections. Among them, cGAS-STING is the major pathway that mainly responds to microbial DNA, DNA virus infections, or self-DNA, which mainly comes from genome instability by-product or released DNA from the mitochondria. cGAS was initially found functional in the cytoplasm, although intriguing evidence indicates that cGAS exists in the nucleus where it is involved in the DNA damage repair process. Because the close connection between DNA damage response and immune response and cGAS recognizes DNA in length-dependent but DNA sequence-independent manners, it is urgent to clear the function balance of cGAS in the nucleus versus cytoplasm and how it is shielded from recognizing the host origin DNA. Here, we outline the current conception of immune response and the regulation mechanism of cGAS in the nucleus. Furthermore, we will shed light on the potential mechanisms that are restricted to be taken away from self-DNA recognition, especially how post-translational modification regulates cGAS functions.


Assuntos
Imunidade Inata , Transdução de Sinais , Nucleotidiltransferases/metabolismo , DNA , Dano ao DNA
12.
Genes (Basel) ; 12(12)2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34946875

RESUMO

Hair follicle development and wool shedding in sheep are poorly understood. This study investigated the population structures and genetic differences between sheep with different wool types to identify candidate genes related to these traits. We used Illumina ovine SNP 50K chip genotyping data of 795 sheep populations comprising 27 breeds with two wool types, measuring the population differentiation index (Fst), nucleotide diversity (θπ ratio), and extended haplotype homozygosity among populations (XP-EHH) to detect the selective signatures of hair sheep and fine-wool sheep. The top 5% of the Fst and θπ ratio values, and values of XP-EHH < -2 were considered strongly selected SNP sites. Annotation showed that the PRX, SOX18, TGM3, and TCF3 genes related to hair follicle development and wool shedding were strongly selected. Our results indicated that these methods identified important genes related to hair follicle formation, epidermal differentiation, and hair follicle stem cell development, and provide a meaningful reference for further study on the molecular mechanisms of economically important traits in sheep.


Assuntos
Folículo Piloso/crescimento & desenvolvimento , Ovinos/genética , , Animais , Análise Mutacional de DNA/veterinária , Estudo de Associação Genômica Ampla/veterinária , Técnicas de Genotipagem/veterinária , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Análise de Componente Principal , Ovinos/crescimento & desenvolvimento , Carneiro Doméstico , Especificidade da Espécie , Lã/crescimento & desenvolvimento
13.
G3 (Bethesda) ; 11(11)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34849779

RESUMO

The marker density, the heritability level of trait and the statistical models adopted are critical to the accuracy of genomic prediction (GP) or selection (GS). If the potential of GP is to be fully utilized to optimize the effect of breeding and selection, in addition to incorporating the above factors into simulated data for analysis, it is essential to incorporate these factors into real data for understanding their impact on GP accuracy, more clearly and intuitively. Herein, we studied the GP of six wool traits of sheep by two different models, including Bayesian Alphabet (BayesA, BayesB, BayesCπ, and Bayesian LASSO) and genomic best linear unbiased prediction (GBLUP). We adopted fivefold cross-validation to perform the accuracy evaluation based on the genotyping data of Alpine Merino sheep (n = 821). The main aim was to study the influence and interaction of different models and marker densities on GP accuracy. The GP accuracy of the six traits was found to be between 0.28 and 0.60, as demonstrated by the cross-validation results. We showed that the accuracy of GP could be improved by increasing the marker density, which is closely related to the model adopted and the heritability level of the trait. Moreover, based on two different marker densities, it was derived that the prediction effect of GBLUP model for traits with low heritability was better; while with the increase of heritability level, the advantage of Bayesian Alphabet would be more obvious, therefore, different models of GP are appropriate in different traits. These findings indicated the significance of applying appropriate models for GP which would assist in further exploring the optimization of GP.


Assuntos
Genoma , Genômica , Animais , Teorema de Bayes , Genótipo , Modelos Genéticos , Fenótipo , Polimorfismo de Nucleotídeo Único , Ovinos/genética
14.
Biomolecules ; 11(8)2021 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-34439915

RESUMO

Transcription-replication interactions occur when DNA replication encounters genomic regions undergoing transcription. Both replication and transcription are essential for life and use the same DNA template making conflicts unavoidable. R-loops, DNA supercoiling, DNA secondary structure, and chromatin-binding proteins are all potential obstacles for processive replication or transcription and pose an even more potent threat to genome integrity when these processes co-occur. It is critical to maintaining high fidelity and processivity of transcription and replication while navigating through a complex chromatin environment, highlighting the importance of defining cellular pathways regulating transcription-replication interaction formation, evasion, and resolution. Here we discuss how transcription influences replication fork stability, and the safeguards that have evolved to navigate transcription-replication interactions and maintain genome integrity in mammalian cells.


Assuntos
Cromatina/metabolismo , Replicação do DNA , Transcrição Gênica , Animais , Cromossomos/metabolismo , DNA/química , Dano ao DNA , DNA Topoisomerases Tipo II/química , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/química , RNA Polimerases Dirigidas por DNA/química , Escherichia coli , Instabilidade Genômica , Humanos , Camundongos , Conformação de Ácido Nucleico , Nucleotídeos/química , Oncogenes , Ligação Proteica , Reprodutibilidade dos Testes , Ribonuclease H/química , Saccharomyces cerevisiae , Processos Estocásticos
15.
J Anim Sci ; 99(9)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34255028

RESUMO

To investigate single nucleotide polymorphism (SNP) loci associated with yearling wool traits of fine-wool sheep for optimizing marker-assisted selection and dissection of the genetic architecture of wool traits, we conducted a genome-wide association study (GWAS) based on the fixed and random model circulating probability unification (FarmCPU) for yearling staple length (YSL), yearling mean fiber diameter (YFD), yearling greasy fleece weight (YGFW), and yearling clean fleece rate (YCFR) by using the whole-genome re-sequenced data (totaling 577 sheep) from the following four fine-wool sheep breeds in China: Alpine Merino sheep (AMS), Chinese Merino sheep (CMS), Qinghai fine-wool sheep (QHS), and Aohan fine-wool sheep (AHS). A total of 16 SNPs were detected above the genome-wise significant threshold (P = 5.45E-09), and 79 SNPs were located above the suggestive significance threshold (P = 5.00E-07) from the GWAS results. For YFD and YGFW traits, 7 and 9 SNPs reached the genome-wise significance thresholds, whereas 10 and 12 SNPs reached the suggestive significance threshold, respectively. For YSL and YCFR traits, none of the SNPs reached the genome-wise significance thresholds, whereas 57 SNPs exceeded the suggestive significance threshold. We recorded 14 genes located at the region of ±50-kb near the genome-wise significant SNPs and 59 genes located at the region of ±50-kb near the suggestive significant SNPs. Meanwhile, we used the Average Information Restricted Maximum likelihood algorithm (AI-REML) in the "HIBLUP" package to estimate the heritability and variance components of the four desired yearling wool traits. The estimated heritability values (h2) of YSL, YFD, YGFW, and YCFR were 0.6208, 0.7460, 0.6758, and 0.5559, respectively. We noted that the genetic parameters in this study can be used for fine-wool sheep breeding. The newly detected significant SNPs and the newly identified candidate genes in this study would enhance our understanding of yearling wool formation, and significant SNPs can be applied to genome selection in fine-wool sheep breeding.


Assuntos
Estudo de Associação Genômica Ampla , , Animais , China , Estudo de Associação Genômica Ampla/veterinária , Fenótipo , Ovinos/genética , Carneiro Doméstico/genética
16.
J Magn Reson ; 326: 106959, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33711752

RESUMO

A 131Xe nuclear magnetic resonance (NMR) oscillator can be used in the measurement of rotation rates, CPT and Lorentz violation tests, etc. To improve the measurement precision of devices based on a 131Xe NMR oscillator, its characteristics need to be fully understood. Under the conditions where the Zeeman interaction is much larger than the quadrupolar interaction, the characteristics of the 131Xe NMR oscillator involving the magnetic resonance, free induction decay, and closed-loop oscillation are investigated both experimentally and theoretically. The main findings are as follows. The 131Xe NMR oscillator consists of six oscillators, three of which can be directly observed by a magnetometer. When the polarization of the 131Xe spin ensemble can be described by a spin temperature, the ensemble exhibits both spin orientation and spin alignment. The spin alignment breaks the symmetry of the three main oscillators. The free induction decay signal of 131Xe depends on parameters such as the spin alignment and the driving magnetic field, which make the measurement of the relaxation time difficult. In the closed-loop mode under self-excitation, the 131Xe NMR oscillator may oscillate with more than one frequency at certain feedback gain and phase. If the quadrupole splitting is much smaller than the spin relaxation rate, then the 131Xe oscillator can be described by the Bloch equations, and the 131Xe oscillator will have a large amplitude. The oscillation frequency of the closed-loop oscillator depends on the quadrupole splitting, polarization, and various relaxation times, which should be considered in designing a high-precision NMR sensor. The results are significant for optimizing and improving the performance of the 131Xe NMR oscillator as a sensor for precision measurement.

17.
Front Genet ; 12: 604235, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33708236

RESUMO

Long-term natural and artificial selection leads to change in certain regions of the genome, resulting in selection signatures that can reveal genes associated with selected traits, such as horns (i.e., polled/horned), high-quality wool traits, and high-altitude hypoxia adaptability. These are complex traits determined by multiple genes, regulatory pathways, and environmental factors. A list of genes with considerable effects on horn and adaptability traits has not been found, although multiple quantitative trait loci (QTL) have been identified. Selection signatures could be identified using genetic differentiation (F ST ), polymorphism levels θπ, and Tajima's D. This study aimed to identify selection signatures in fine-wool sheep and to investigate the genes annotated in these regions, as well as the biological pathways involved in horn and adaptability traits. For this purpose, the whole-genome sequence of 120 individuals from four breeds, which come from different elevations and habitats in China, was used to analyze selection signatures for horn and adaptability traits. Annotation of the consensus regions of F ST and θπ ratios revealed a list of identified genes associated with polled/horned and high-altitude hypoxia adaptability traits, such as RXPF2, EERFC4, MSH6, PP1R12A, THBS1, ATP1B2, RYR2, and PLA2G2E. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified genes related primarily to mismatch repair, metabolism, vascular smooth muscle contraction, and cardiac muscle contraction. This is the first study to demonstrate that selection signatures play an important role in the polled/horned and high-altitude hypoxia adaptability traits of fine-wool sheep breeds that have undergone high-intensity selection and adapted to different ecological environments in China. Changes observed in the genome of fine-wool sheep may have acted on genomic regions that affect performance traits and provide a reference for genome design and breeding.

18.
BMC Genomics ; 22(1): 127, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33602144

RESUMO

BACKGROUND: The quality and yield of wool determine the economic value of the fine-wool sheep. Therefore, discovering markers or genes relevant to wool traits is the cornerstone for the breeding of fine-wool sheep. In this study, we used the Illumina HiSeq X Ten platform to re-sequence 460 sheep belonging to four different fine-wool sheep breeds, namely, Alpine Merino sheep (AMS), Chinese Merino sheep (CMS), Aohan fine-wool sheep (AHS) and Qinghai fine-wool sheep (QHS). Eight wool traits, including fiber diameter (FD), fiber diameter coefficient of variance (FDCV), fiber diameter standard deviation (FDSD), staple length (SL), greasy fleece weight (GFW), clean wool rate (CWR), staple strength (SS) and staple elongation (SE) were examined. A genome-wide association study (GWAS) was performed to detect the candidate genes for the eight wool traits. RESULTS: A total of 8.222 Tb of raw data was generated, with an average of approximately 8.59X sequencing depth. After quality control, 12,561,225 SNPs were available for analysis. And a total of 57 genome-wide significant SNPs and 30 candidate genes were detected for the desired wool traits. Among them, 7 SNPs and 6 genes are related to wool fineness indicators (FD, FDCV and FDSD), 10 SNPs and 7 genes are related to staple length, 13 SNPs and 7 genes are related to wool production indicators (GFW and CWR), 27 SNPs and 10 genes associated with staple elongation. Among these candidate genes, UBE2E3 and RHPN2 associated with fiber diameter, were found to play an important role in keratinocyte differentiation and cell proliferation. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment results, revealed that multitude significant pathways are related to keratin and cell proliferation and differentiation, such as positive regulation of canonical Wnt signaling pathway (GO:0090263). CONCLUSION: This is the first GWAS on the wool traits by using re-sequencing data in Chinese fine-wool sheep. The newly detected significant SNPs in this study can be used in genome-selective breeding for the fine-wool sheep. And the new candidate genes would provide a good theoretical basis for the fine-wool sheep breeding.


Assuntos
Estudo de Associação Genômica Ampla , , Animais , China , Fenótipo , Ovinos/genética , Carneiro Doméstico
19.
BMC Genomics ; 22(1): 78, 2021 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-33485316

RESUMO

BACKGROUND: Copy number variation (CNV) is an important source of genetic variation that has a significant influence on phenotypic diversity, economically important traits and the evolution of livestock species. In this study, the genome-wide CNV distribution characteristics of 32 fine-wool sheep from three breeds were analyzed using resequencing. RESULTS: A total of 1,747,604 CNVs were detected in this study, and 7228 CNV regions (CNVR) were obtained after merging overlapping CNVs; these regions accounted for 2.17% of the sheep reference genome. The average length of the CNVRs was 4307.17 bp. "Deletion" events took place more frequently than "duplication" or "both" events. The CNVRs obtained overlapped with previously reported sheep CNVRs to variable extents (4.39-55.46%). Functional enrichment analysis showed that the CNVR-harboring genes were mainly involved in sensory perception systems, nutrient metabolism processes, and growth and development processes. Furthermore, 1855 of the CNVRs were associated with 166 quantitative trait loci (QTL), including milk QTLs, carcass QTLs, and health-related QTLs, among others. In addition, the 32 fine-wool sheep were divided into horned and polled groups to analyze for the selective sweep of CNVRs, and it was found that the relaxin family peptide receptor 2 (RXFP2) gene was strongly influenced by selection. CONCLUSIONS: In summary, we constructed a genomic CNV map for Chinese indigenous fine-wool sheep using resequencing, thereby providing a valuable genetic variation resource for sheep genome research, which will contribute to the study of complex traits in sheep.


Assuntos
Variações do Número de Cópias de DNA , , Animais , China , Mapeamento Cromossômico , Humanos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Ovinos/genética
20.
Mitochondrial DNA B Resour ; 5(1): 990-991, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33366841

RESUMO

Alpine Merino sheep is one of the most important fine-wool sheep breeds in China. In this study, we present the complete mitogenome of Alpine Merino sheep for the first time. The genome has a length of 16,619bp, containing 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes, and a control region (D-loop). Phylogenetically, the Alpine Merino sheep is closer to Oula Tibetan sheep and Tashkurgan sheep. This report provided new data for the phylogeny of Alpine Merino sheep.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA