Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 18(48): 9163-9171, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36377854

RESUMO

Stiffness variations extend creatures' functions and capabilities to deal with complex environments. In this study, we proposed an electrorheological fluid-based variable stiffness device, named VSERF, made up of soft materials. Our device is soft, thin, and stretchable so that it can conform to surfaces with complex morphologies. The stiffness of the VSERF device can be continuously, independently, and reversibly adjusted by applying an electric field. It achieves 14.8-times compressive stiffness variation and 3.5-times tangential stiffness variation when the electric field intensity increases from 0 V mm-1 to 750 V mm-1. The VSERF device is able to return to its initial shape after removing the external force and electric field, allowing it to be reused. The effects of stretching and bending on the device's capability of stiffness variations are investigated experimentally and the results show that the stiffness variation is unaffected by a stretching strain of up to 20% and a bending curvature of up to 50 m-1. Finally, we show that the VSERF device is capable of conforming to complex surfaces (coral stones, pencils, and 3D printed cubes) in its inactive state, hanging on them with a weight of up to 80 g (19 times of its own weight) in its active state, and detaching when the electric field is removed. The device's short-term and long-term stabilities are experimentally investigated as well. The demonstration of the VSERF's attaching and detaching ability shows that the stiffness-variation device's adaptability to complex environments can be improved.

2.
J R Soc Interface ; 19(191): 20220298, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35702860

RESUMO

The growth and development of biological tissues and organs strongly depend on the requirements of their multiple functions. Plant veins yield efficient nutrient transport and withstand various external loads. Victoria cruziana, a tropical species of the Nymphaeaceae family of water lilies, has evolved a network of three-dimensional and rugged veins, which yields a superior load-bearing capacity. However, it remains elusive how biological and mechanical factors affect their unique vein layout. In this paper, we propose a multi-functional and large-scale topology optimization method to investigate the morphomechanics of Victoria cruziana veins, which optimizes both the structural stiffness and nutrient transport efficiency. Our results suggest that increasing the branching order of radial veins improves the efficiency of nutrient delivery, and the gradient variation of circumferential vein sizes significantly contributes to the stiffness of the leaf. In the present method, we also consider the optimization of the wall thickness and the maximum layout distance of circumferential veins. Furthermore, biomimetic leaves are fabricated by using the three-dimensional printing technique to verify our theoretical findings. This work not only gains insights into the morphomechanics of Victoria cruziana veins, but also helps the design of, for example, rib-reinforced shells, slabs and dome skeletons.


Assuntos
Nymphaeaceae , Folhas de Planta , Plantas , Suporte de Carga
3.
Sci Robot ; 7(66): eabm8597, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35613300

RESUMO

In complex systems like aircraft engines and oil refinery machines, pipeline inspection is an essential task for ensuring safety. Here, we proposed a type of smart material-driven pipeline inspection robot (weight, 2.2 grams; length, 47 millimeters; diameter, <10 millimeters) that could fit into pipes with sub-centimeter diameters and different curvatures. We adopted high-power density, long-life dielectric elastomer actuators as artificial muscles and smart composite microstructure-based, high-efficiency anchoring units as transmissions. Fast assembling of components using magnets with an adjustable number of units was used to fit varying pipeline geometries. We analyzed the dynamic characteristics of the robots by considering soft material's unique properties like viscoelasticity and dynamic vibrations and tuned the activation voltage's frequency and phase accordingly. Powered by tethered cables from outside the pipe, our peristaltic pipeline robot achieved rapid motions horizontally and vertically (horizontal: 1.19 body lengths per second, vertical: 1.08 body lengths per second) in a subcentimeter-sized pipe (diameter, 9.8 millimeters). Besides, it was capable of moving in pipes with varying geometries (diameter-changing pipe, L-shaped pipe, S-shaped pipe, or spiral-shaped pipe), filled media (air or oil), and materials (glass, metal, or carbon fiber). To demonstrate its capability for pipeline inspection, we installed a miniature camera on its front and controlled the robot manually from outside. The robot successfully finished an inspection task at different speeds.


Assuntos
Robótica , Elastômeros , Movimento (Física) , Músculos , Peristaltismo
4.
Nat Commun ; 12(1): 4517, 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34312391

RESUMO

Dielectric elastomer actuators (DEAs) with large electrically-actuated strain can build light-weight and flexible non-magnetic motors. However, dielectric elastomers commonly used in the field of soft actuation suffer from high stiffness, low strength, and high driving field, severely limiting the DEA's actuating performance. Here we design a new polyacrylate dielectric elastomer with optimized crosslinking network by rationally employing the difunctional macromolecular crosslinking agent. The proposed elastomer simultaneously possesses desirable modulus (~0.073 MPa), high toughness (elongation ~2400%), low mechanical loss (tan δm = 0.21@1 Hz, 20 °C), and satisfactory dielectric properties ([Formula: see text] = 5.75, tan δe = 0.0019 @1 kHz), and accordingly, large actuation strain (118% @ 70 MV m-1), high energy density (0.24 MJ m-3 @ 70 MV m-1), and rapid response (bandwidth above 100 Hz). Compared with VHBTM 4910, the non-magnetic motor made of our elastomer presents 15 times higher rotation speed. These findings offer a strategy to fabricate high-performance dielectric elastomers for soft actuators.

5.
Soft Robot ; 7(4): 451-461, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31923364

RESUMO

Dielectric elastomer actuators exhibit an unusual combination of large displacements, moderate bandwidth, low power consumption, and mechanical impedance comparable with human skin, making them attractive for haptic devices. In this article, we propose a wearable haptic communication device based on a two-by-two array of dielectric elastomer linear actuators. We briefly describe the architecture of the actuators and their mechanical and electrical integration into a wearable armband. We then characterize the actuators' force, displacement, and thermal properties in a bench-top configuration. We also report on the power and drive circuit design. Finally, we perform a set of preliminary perception evaluations on participants using our haptic device, including detection threshold tests and identification tests for locations and directions on the forearm. Human testing with individual actuators demonstrates that the broadband actuation can be easily perceived on the forearm, providing the basis for both the development of a wearable actuator array and its use in more extensive perception evaluation as described herein.


Assuntos
Elastômeros , Dispositivos Eletrônicos Vestíveis , Antebraço , Humanos , Pele
6.
Nature ; 575(7782): 324-329, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31686057

RESUMO

Flying insects capable of navigating in highly cluttered natural environments can withstand in-flight collisions because of the combination of their low inertia1 and the resilience of their wings2, exoskeletons1 and muscles. Current insect-scale (less than ten centimetres long and weighing less than five grams) aerial robots3-6 use rigid microscale actuators, which are typically fragile under external impact. Biomimetic artificial muscles7-10 that are capable of large deformation offer a promising alternative for actuation because they can endure the stresses caused by such impacts. However, existing soft actuators11-13 have not yet demonstrated sufficient power density to achieve lift-off, and their actuation nonlinearity and limited bandwidth create further challenges for achieving closed-loop (driven by an input control signal that is adjusted based on sensory feedback) flight control. Here we develop heavier-than-air aerial robots powered by soft artificial muscles that demonstrate open-loop (driven by a predetermined signal without feedback), passively stable (upright during flight) ascending flight as well as closed-loop, hovering flight. The robots are driven by multi-layered dielectric elastomer actuators that weigh 100 milligrams each and have a resonance frequency of 500 hertz and power density of 600 watts per kilogram. To increase the mechanical power output of the actuator and to demonstrate flight control, we present ways to overcome challenges unique to soft actuators, such as nonlinear transduction and dynamic buckling. These robots can sense and withstand collisions with surrounding obstacles and can recover from in-flight collisions by exploiting material robustness and vehicle passive stability. We also fly two micro-aerial vehicles simultaneously in a cluttered environment. They collide with the wall and each other without suffering damage. These robots rely on offboard amplifiers and an external motion-capture system to provide power to the dielectric elastomer actuators and to control their flight. Our work demonstrates how soft actuators can achieve sufficient power density and bandwidth to enable controlled flight, illustrating the potential of developing next-generation agile soft robots.


Assuntos
Voo Animal/fisiologia , Músculos/fisiologia , Animais , Próteses e Implantes , Robótica , Asas de Animais
7.
Angew Chem Int Ed Engl ; 58(33): 11182-11204, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-30707785

RESUMO

Soft materials possess several distinctive characteristics, such as controllable deformation, infinite degrees of freedom, and self-assembly, which make them promising candidates for building soft machines, robots, and haptic interfaces. In this Review, we give an overview of recent advances in these areas, with an emphasis on two specific topics: bio-inspired design and additive manufacturing. Biology is an abundant source of inspiration for functional materials and systems that mimic the function or mechanism of biological tissues, agents, and behaviors. Additive manufacturing has enabled the fabrication of materials and structures prevalent in biology, thereby leading to more-capable soft robots and machines. We believe that bio-inspired design and additive manufacturing have been, and will continue to be, important tools for the design of soft robots.


Assuntos
Materiais Biocompatíveis/química , Materiais Biomiméticos , Ciência dos Materiais , Robótica , Biomimética , Desenho de Equipamento , Impressão Tridimensional
8.
Proc Natl Acad Sci U S A ; 116(7): 2476-2481, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30679271

RESUMO

Soft robotics represents a new set of technologies aimed at operating in natural environments and near the human body. To interact with their environment, soft robots require artificial muscles to actuate movement. These artificial muscles need to be as strong, fast, and robust as their natural counterparts. Dielectric elastomer actuators (DEAs) are promising soft transducers, but typically exhibit low output forces and low energy densities when used without rigid supports. Here, we report a soft composite DEA made of strain-stiffening elastomers and carbon nanotube electrodes, which demonstrates a peak energy density of 19.8 J/kg. The result is close to the upper limit for natural muscle (0.4-40 J/kg), making these DEAs the highest-performance electrically driven soft artificial muscles demonstrated to date. To obtain high forces and displacements, we used low-density, ultrathin carbon nanotube electrodes which can sustain applied electric fields upward of 100 V/µm without suffering from dielectric breakdown. Potential applications include prosthetics, surgical robots, and wearable devices, as well as soft robots capable of locomotion and manipulation in natural or human-centric environments.


Assuntos
Órgãos Artificiais , Elastômeros , Eletricidade , Músculos/fisiologia , Robótica , Eletrodos , Humanos , Contração Muscular , Nanotubos de Carbono
9.
Adv Mater ; 28(44): 9770-9775, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27717071

RESUMO

An intrinsically soft and stretchable multicolor display and touch interface is reported. Red, green, and blue pixels are formed separately by photopatterning transition-metal-doped ZnS embedded in silicone gels and transfer printing onto an elastomeric dielectric sheet. The device shows stable illumination while being stretched up to 200% area strain or under different deformation modalities. It also introduces capabilities for dynamic colorations and multipoint capacitive touch sensing.

10.
Sci Robot ; 1(1)2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-33157858

RESUMO

Because of their continuous and natural motion, fluidically powered soft actuators have shown potential in a range of robotic applications, including prosthetics and orthotics. Despite these advantages, robots using these actuators require stretchable sensors that can be embedded in their bodies for sophisticated functions. Presently, stretchable sensors usually rely on the electrical properties of materials and composites for measuring a signal; many of these sensors suffer from hysteresis, fabrication complexity, chemical safety and environmental instability, and material incompatibility with soft actuators. Many of these issues are solved if the optical properties of materials are used for signal transduction. We report the use of stretchable optical waveguides for strain sensing in a prosthetic hand. These optoelectronic strain sensors are easy to fabricate, are chemically inert, and demonstrate low hysteresis and high precision in their output signals. As a demonstration of their potential, the photonic strain sensors were used as curvature, elongation, and force sensors integrated into a fiber-reinforced soft prosthetic hand. The optoelectronically innervated prosthetic hand was used to conduct various active sensation experiments inspired by the capabilities of a real hand. Our final demonstration used the prosthesis to feel the shape and softness of three tomatoes and select the ripe one.


Assuntos
Membros Artificiais , Mãos/inervação , Mãos/fisiologia , Próteses e Implantes , Fenômenos Biomecânicos , Elasticidade , Dedos/inervação , Dedos/fisiologia , Força da Mão/fisiologia , Humanos , Dispositivos Ópticos , Desenho de Prótese , Dispositivos Eletrônicos Vestíveis
11.
Bioinspir Biomim ; 10(5): 055003, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26353071

RESUMO

The detailed mechanical design of a digital mask projection stereolithgraphy system is described for the 3D printing of soft actuators. A commercially available, photopolymerizable elastomeric material is identified and characterized in its liquid and solid form using rheological and tensile testing. Its capabilities for use in directly printing high degree of freedom (DOF), soft actuators is assessed. An outcome is the ∼40% strain to failure of the printed elastomer structures. Using the resulting material properties, numerical simulations of pleated actuator architectures are analyzed to reduce stress concentration and increase actuation amplitudes. Antagonistic pairs of pleated actuators are then fabricated and tested for four-DOF, tentacle-like motion. These antagonistic pairs are shown to sweep through their full range of motion (∼180°) with a period of less than 70 ms.


Assuntos
Materiais Biomiméticos/síntese química , Biomimética/instrumentação , Elastômeros/química , Músculo Esquelético/fisiologia , Impressão Tridimensional , Robótica/instrumentação , Animais , Órgãos Artificiais , Módulo de Elasticidade , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Fotografação/métodos , Estresse Mecânico
12.
Adv Mater ; 27(41): 6334-40, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26384472

RESUMO

Open-celled, elastomeric foams allow the simple design of fully 3D pneumatic soft machines using common forming techniques. This is demonstrated through the fabrication of simple actuators and an entirely soft, functional fluid pump formed in the shape of the human heart. The device pumps at physiologically relevant frequencies and pressures and attains a flow rate higher than all previously reported soft pumps.


Assuntos
Robótica , Dimetilpolisiloxanos/química , Elasticidade , Porosidade , Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA