Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Geriatr Cardiol ; 18(4): 261-270, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33995505

RESUMO

BACKGROUND: The efficacy and safety of proprotein convertase subtilisin/kexin type 9 (PCSK-9) inhibitors were confirmed by several clinical trials, but its effectiveness in routine clinical practice in China has not been evaluated. This study aims to describe the real world effectiveness of PCSK-9 inhibitors combined with statins compared with statins-based therapy among patients with very high risk of atherosclerotic cardiovascular disease (ASCVD). METHODS: This is a multi-center observational study, enrolled patients from 32 hospitals who underwent percutaneous coronary intervention (PCI) from January to June in 2019. There are 453 patients treated with PCSK-9 inhibitors combined with statins in PCSK-9 inhibitor group and 2,610 patients treated with statins-based lipid lowering therapies in statins-based group. The lipid control rate and incidence of major adverse cardiovascular events (MACE) over six months were compared between two groups. A propensity score-matched (PSM) analysis was used to balance two groups on confounding factors. Survival analysis using Kaplan-Meier methods was applied for MACE. RESULTS: In a total of 3,063 patients, 89.91% of patients had received moderate or high-intensity statins-based therapy before PCI, but only 9.47% of patients had low-density lipoprotein cholesterol (LDL-C) levels below 1.4 mmol/L at baseline. In the PSM selected patients, LDL-C level was reduced by 42.57% in PCSK-9 inhibitor group and 30.81% (P < 0.001) in statins-based group after six months. The proportion of LDL-C ≤ 1.0 mmol/L increased from 5.29% to 29.26% in PCSK-9 inhibitor group and 0.23% to 6.11% in statins-based group, and the proportion of LDL-C ≤ 1.4 mmol/L increased from 10.36% to 47.69% in PCSK-9 inhibitor group and 2.99% to 18.43% in statins-based group ( P < 0.001 for both). There was no significant difference between PCSK-9 inhibitor and statins-based treatment in reducing the risk of MACE (hazard ratio = 2.52, 95% CI: 0.49-12.97, P = 0.250). CONCLUSIONS: In the real world, PCSK-9 inhibitors combined with statins could significantly reduce LDL-C levels among patients with very high risk of ASCVD in China. The long-term clinical benefits for patients received PCSK-9 inhibitor to reduce the risk of MACE is still unclear and requires further study.

2.
Asian Pac J Cancer Prev ; 16(3): 1077-82, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25735335

RESUMO

Recent studies have suggested that the RAS protein activator like-1 (RASAL1) functions as a tumor suppressor in vitro and may play an important role in the development of gastric cancer. However, whether or not RASAL1 suppresses tumor growth in vivo remains to be determined. In the present study, we investigated the role of RASAL1 in gastric carcinogenesis using an in vivo xenograft model. A lentiviral RASAL1 expression vector was constructed and utilized to transfect the human poorly differentiated gastric adenocarcinoma cell line, BGC-823. RASAL1 expression levels were verified by quantitative real-time RT-PCR and Western blotting analysis. Then, we established the nude mice xenograft model using BGC-823 cells either over-expressing RASAL1 or normal. After three weeks, the results showed that the over-expression of RASAL1 led to a significant reduction in both tumor volume and weight compared with the other two control groups. Furthermore, in xenograft tissues the increased expression of RASAL1 in BGC-823 cells caused decreased expression of p-ERK1/2, a downstream moleculein the RAS/RAF/MEK/ERK signal pathway. These findings demonstrated that the over-expression of RASAL1 could inhibit the growth of gastric cancer by inactivation of the RAS/RAF/MEK/ERK pathway in vivo. This study indicates that RASAL1 may attenuate gastric carcinogenesis.


Assuntos
Proliferação de Células , Proteínas Ativadoras de GTPase/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Neoplasias Gástricas/patologia , Neoplasias Gástricas/prevenção & controle , Proteínas ras/antagonistas & inibidores , Animais , Apoptose , Western Blotting , Proteínas Ativadoras de GTPase/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Neoplasias Gástricas/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas ras/genética , Proteínas ras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA