Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627462

RESUMO

Despite the effectiveness of antiretroviral therapy (ART) in prolonging the lifespan of individuals infected with HIV-1, it does not offer a cure for acquired immunodeficiency syndrome (AIDS). The "block and lock" approach aims to maintain the provirus in a state of extended transcriptional arrest. By employing the "block and lock" strategy, researchers endeavor to impede disease progression by preventing viral rebound for an extended duration following patient stops receiving ART. The crux of this strategy lies in the utilization of latency-promoting agents (LPAs) that are suitable for impeding HIV-1 provirus transcription. However, previously documented LPAs exhibited limited efficacy in primary cells or samples obtained from patients, underscoring the significance of identifying novel LPAs that yield substantial outcomes. In this study, we performed high-throughput screening of FDA-approved compound library in the J-Lat A2 cell line to discover more efficacious LPAs. We discovered ripretinib being an LPA candidate, which was validated and observed to hinder proviral activation in cell models harboring latent infections, as well as CD4+ T cells derived from infected patients. We demonstrated that ripretinib effectively impeded proviral activation through inhibition of the PI3K-AKT-mTOR signaling pathway in the HIV-1 latent cells, thereby suppressing the opening states of cellular chromatin. The results of this research offer a promising drug candidate for the implementation of the "block and lock" strategy in the pursuit of an HIV-1 cure.

2.
J Immunol ; 211(9): 1418-1425, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37728417

RESUMO

Ever-growing evidence has revealed that group 2 innate lymphoid cells (ILC2s) exhibit pleiotropic effects in antihelminth immunity, allergy, tissue protection, and cancer. Currently, the role of ILC2s in cancer is highly controversial regarding the intricate tumor microenvironment (TME), and the tumor-promoting or antitumor immunological mechanisms of ILC2s remain largely unknown. In this study, we report that dopamine receptor 1 (DRD1) restrains ILC2 activity in the TME. DRD1 deficiency promotes ILC2 activation, which irritates eosinophil recruitment and cytotoxic CD8+ T cell expansion during ongoing malignancy. Consequently, DRD1-deficient mice exhibit delayed tumor growth and reduced tumor progression. Furthermore, fenoldopam, a selective DRD1 agonist, restrains the ILC2 response in the TME and aggravates tumor burden in mice. Taken together, our data elaborate that the DRD1 signal acts as an excitatory rheostat in regulating ILC2-dependent antitumor immunity.

3.
J Med Virol ; 95(7): e28973, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37477806

RESUMO

The HIV-1 pandemic has persisted for four decades, and poses a major challenge to global public health. Shenzhen, a city with large number of migrant populations in China, is suffering HIV-1 epidemic. It is necessary to continuously conduct the molecular surveillance among newly diagnosed HIV-1 patients in these migrant population. In this study, plasma samples of newly diagnosed and ART-naive HIV-1 infections were collected from Shenzhen city in China. The partial genes of HIV-1 gag and pol were amplified and sequenced for the analysis of genotype, drug resistance, and molecular transmission network. Ninety-one sequences of pol gene were obtained from newly diagnosed HIV-1 infections in Shenzhen, and seven HIV-1 subtypes were revealed in this investigation. Among them, the circulating recombinant form (CRF) 07_BC was the mostly frequent subtype (53.8%, 49/91), followed by CRF01_AE (20.9%, 19/91), CRF55_01B (9.9%, 9/91), unique recombinant forms (URFs) (8.8%, 8/91), B (3.3%, 3/91), CRF59_01B (2.2%, 2/91), and CRF08_BC (1.1%, 1/91). The overall prevalence of pretreatment drug resistance (PDR) was 23.1% (21/91), and 52.38% (11/21) of the PDR was specific for the nonnucleotide reverse transcriptase inhibitors (NNRTIs). Furthermore, a total of 3091 pol gene sequences were used to generate 19 molecular transmission clusters, and then one growing cluster, a new cluster, and a cluster with growth reactivation were identified. The result revealed that more sexual partner, CRF_07BC subtype, and seven amino acid deletions in gag p6 region might be the influencing factors associated with the high risk of transmission behavior. Compared with CRF01_AE subtype, CRF07_BC subtype strains were more likely to form clusters in molecular transmission network. This suggests that long-term surveillance of the HIV-1 molecular transmission should be a critical measure to achieve a precise intervention for controlling the spread of HIV-1 in China.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Humanos , HIV-1/genética , Filogenia , Infecções por HIV/genética , Genes pol , Soropositividade para HIV/genética , Genótipo , China/epidemiologia , Farmacorresistência Viral/genética
5.
Phytomedicine ; 116: 154855, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37172478

RESUMO

BACKGROUND: Wogonin, a flavone isolated from Scutellaria baicalensis Georgi, is a commonly used phytochemical with anti-inflammatory and antitumor properties. However, the antiviral activity of wogonin against human immunodeficiency virus type 1 (HIV-1) has not been reported. PURPOSE: The current study aimed to explore whether wogonin can suppress latent HIV-1 reactivation and the mechanism of wogonin in inhibiting proviral HIV-1 transcription. METHODS: We assessed the effects of wogonin on HIV-1 reactivation using flow cytometry, cytotoxicity assay, quantitative PCR (qPCR), viral quality assurance (VQA), and western blot analysis. RESULTS: Wogonin, a flavone isolated from S. baicalensis, significantly inhibited the reactivation of latent HIV-1 in cellular models and in primary CD4+ T cells from antiretroviral therapy (ART)-suppressed individuals ex vivo. Wogonin exhibited low cytotoxicity and long-lasting inhibition of HIV-1 transcription. Triptolide is a latency-promoting agent (LPA) that inhibits HIV-1 transcription and replication; wogonin had a stronger ability to inhibit HIV-1 latent reactivation than triptolide. Mechanistically, wogonin inhibited the reactivation of latent HIV-1 by inhibiting the expression of p300, a histone acetyltransferase, and decreasing the crotonylation of histone H3/H4 in the HIV-1 promoter region. CONCLUSION: Our study found that wogonin is a novel LPA that can inhibit HIV-1 transcription by HIV-1 epigenetic silencing, which could bear promising significance for future applications of HIV-1 functional cure.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Histonas/metabolismo , HIV-1/fisiologia , Latência Viral/fisiologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/metabolismo , Linfócitos T CD4-Positivos
6.
Antimicrob Agents Chemother ; 67(6): e0006723, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37212670

RESUMO

Although antiretroviral therapy (ART) is effective in suppressing viral replication, it does not cure HIV-1 infection due to the presence of the viral latent reservoir. Rather than reactivating the latent viruses, the "block and lock" strategy aims to shift the viral reservoir to a deeper state of transcriptional silencing, thus preventing viral rebound after ART interruption. Although some latency-promoting agents (LPAs) have been reported, none of them have been approved for clinical application due to cytotoxicity and limited efficacy; therefore, it is important to search for novel and effective LPAs. Here, we report an FDA-approved drug, ponatinib, that can broadly repress latent HIV-1 reactivation in different cell models of HIV-1 latency and in primary CD4+ T cells from ART-suppressed individuals ex vivo. Ponatinib does not change the expression of activation or exhaustion markers on primary CD4+ T cells and does not induce severe cytotoxicity and cell dysfunction. Mechanistically, ponatinib suppresses proviral HIV-1 transcription by inhibiting the activation of the AKT-mTOR pathway, which subsequently blocks the interaction between key transcriptional factors and the HIV-1 long terminal repeat (LTR). In summary, we discovered a novel latency-promoting agent, ponatinib, which could have promising significance for future applications of HIV-1 functional cure.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Linfócitos T CD4-Positivos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Ativação Viral , Latência Viral , Replicação Viral
7.
Immunity ; 56(2): 320-335.e9, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36693372

RESUMO

Neuronal signals have emerged as pivotal regulators of group 2 innate lymphoid cells (ILC2s) that regulate tissue homeostasis and allergic inflammation. The molecular pathways underlying the neuronal regulation of ILC2 responses in lungs remain to be fully elucidated. Here, we found that the abundance of neurotransmitter dopamine was negatively correlated with circulating ILC2 numbers and positively associated with pulmonary function in humans. Dopamine potently suppressed lung ILC2 responses in a DRD1-receptor-dependent manner. Genetic deletion of Drd1 or local ablation of dopaminergic neurons augmented ILC2 responses and allergic lung inflammation. Transcriptome and metabolic analyses revealed that dopamine impaired the mitochondrial oxidative phosphorylation (OXPHOS) pathway in ILC2s. Augmentation of OXPHOS activity with oltipraz antagonized the inhibitory effect of dopamine. Local administration of dopamine alleviated allergen-induced ILC2 responses and airway inflammation. These findings demonstrate that dopamine represents an inhibitory regulator of ILC2 responses in allergic airway inflammation.


Assuntos
Imunidade Inata , Pneumonia , Humanos , Dopamina/metabolismo , Linfócitos , Pulmão/metabolismo , Pneumonia/metabolismo , Inflamação/metabolismo , Interleucina-33/metabolismo
8.
J Invest Dermatol ; 142(5): 1338-1348.e6, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34662561

RESUMO

Sexually transmitted infections such as Chlamydia trachomatis can enhance HIV-1 infection. However, the molecular mechanisms modulating the enhancement of HIV-1 infectivity and replication during HIV-1/sexually transmitted infections coinfection remain elusive. In this study, we performed an ex vivo infection of HIV-1 in PBMCs of C. trachomatis‒infected patients and observed a significant increase in HIV-1 p24 levels compared with those in cells from healthy donors. Similarly, C. trachomatis‒stimulated PBMCs from healthy donors showed enhanced susceptibility to HIV-1. C. trachomatis‒stimulated CD4 T cells also harbored more HIV-1 copy numbers. RNA sequencing data revealed the upregulation of CCL3L1/CCL3L3, a paralog of CCL3 in C. trachomatis‒stimulated CD4 T cells infected with HIV-1. Furthermore, an increase in CCL3L1/CCL3L3 expression levels correlated with HIV-1 replication in C. trachomatis‒stimulated cells. However, the addition of exogenous CCL3L1 reduces HIV-1 infection of healthy cells, indicating a dual role of CCL3L1 in HIV-1 infection. Further investigation revealed that a knockout of CCL3L1/CCL3L3 in Jurkat T cells rescued the increased susceptibility of C. trachomatis‒stimulated cells to HIV-1 infection. These results reveal a role for CCL3L1/CCL3L3 in enhancing HIV-1 replication and production and highlight a mechanism for the enhanced susceptibility to HIV-1 among C. trachomatis‒infected patients.


Assuntos
Infecções por HIV , HIV-1 , Chlamydia trachomatis , HIV-1/fisiologia , Humanos , Proteínas Inflamatórias de Macrófagos
9.
Front Immunol ; 12: 745784, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616406

RESUMO

Antiretroviral drugs effectively halt HIV-1 replication and disease progression, however, due to the presence of a stable viral latent reservoir, the infection cannot be cured by antiretroviral drugs alone. Elucidating the molecular mechanisms underlying HIV-1 latent infection remains a critical hurdle that precludes the development of novel therapeutic strategies aiming for a potential functional cure. Cellular metabolism has been reported to affect HIV-1 replication in CD4+ T cells, but it remains largely unclear whether it is involved in the regulation of HIV-1 latency. Here, we performed a sub-pooled CRISPR library knockout screen targeting 1773 metabolic-related genes in a cell model of HIV-1 latent infection and found that Methionine Adenosyltransferase 2A (MAT2A) contributes to HIV-1 latency. MAT2A knockout enhanced the reactivation of latent HIV-1 while MAT2A overexpression did the opposite. Mechanistically, MAT2A modulates HIV-1 latency through S-Adenosylmethionine (SAM)-mediated one-carbon flux. MAT2A knockout resulted in a significant downregulation of DNA and histone methylation at the HIV-1 5'-LTR. Importantly, we found that the plasma level of SAM is positively correlated with HIV-1 DNA in PBMCs from ART-treated infected individuals, suggesting SAM could serve as a potential biomarker for the latent viral reservoir. Overall, this study reveals an important role of MAT2A-mediated one-carbon metabolism in regulating HIV-1 latency and provides a promising target for the development of new strategies for a functional cure of HIV-1.


Assuntos
Linfócitos T CD4-Positivos/enzimologia , Infecções por HIV/imunologia , HIV-1/fisiologia , Infecção Latente/imunologia , Metionina Adenosiltransferase/fisiologia , S-Adenosilmetionina/sangue , Adulto , Fármacos Anti-HIV/uso terapêutico , Linfócitos T CD4-Positivos/imunologia , Sistemas CRISPR-Cas , Carbono/metabolismo , DNA Viral/sangue , Técnicas de Inativação de Genes , Biblioteca Gênica , Células HEK293 , Infecções por HIV/sangue , Infecções por HIV/tratamento farmacológico , Repetição Terminal Longa de HIV , Código das Histonas , Humanos , Células Jurkat , Infecção Latente/sangue , Interferência de RNA , RNA Interferente Pequeno/genética , Ativação Viral
10.
Elife ; 102021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33835029

RESUMO

The major barrier to curing HIV-1 infection is a small pool of latently infected cells that harbor replication-competent viruses, which are widely considered the origin of viral rebound when antiretroviral therapy (ART) is interrupted. The difficulty in distinguishing latently infected cells from the vast majority of uninfected cells has represented a significant bottleneck precluding comprehensive understandings of HIV-1 latency. Here we reported and validated a newly designed dual fluorescent reporter virus, DFV-B, infection with which primary CD4+ T cells can directly label latently infected cells and generate a latency model that was highly physiological relevant. Applying DFV-B infection in Jurkat T cells, we generated a stable cell line model of HIV-1 latency with diverse viral integration sites. High-throughput compound screening with this model identified ACY-1215 as a potent latency reversing agent, which could be verified in other cell models and in primary CD4+ T cells from ART-suppressed individuals ex vivo. In summary, we have generated a meaningful and feasible model to directly study latently infected cells, which could open up new avenues to explore the critical events of HIV-1 latency and become a valuable tool for the research of AIDS functional cure.


Assuntos
Linfócitos T CD4-Positivos/virologia , Infecções por HIV/virologia , HIV-1/fisiologia , Latência Viral , Antirretrovirais/farmacologia , Corantes Fluorescentes/farmacologia , Genes Reporter , Humanos , Células Jurkat , Proteínas Luminescentes/metabolismo , Modelos Biológicos , Integração Viral , Replicação Viral
11.
Chin Med J (Engl) ; 133(23): 2867-2873, 2020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-33273337

RESUMO

Antiretroviral therapy (ART) can effectively inhibit human immunodeficiency virus-1 (HIV-1) replication, but is not curative due to the existence of a stable viral latent reservoir harboring replication-competent proviruses. In order to reduce or eliminate the HIV-1 latent reservoir, characteristics of the latently infected cells need to be intensively studied, and a comprehensive understanding of the heterogenous nature of the latent reservoir will be critical to develop novel therapeutic strategies. Here, we discuss the different cell types and mechanisms contributing to the complexity and heterogeneity of HIV-1 latent reservoirs, and summarize the key challenges to the development of cure strategies for acquired immunodeficiency syndrome (AIDS).


Assuntos
Infecções por HIV , HIV-1 , Linfócitos T CD4-Positivos , Infecções por HIV/tratamento farmacológico , Humanos , Carga Viral , Latência Viral , Replicação Viral
12.
Artigo em Inglês | MEDLINE | ID: mdl-32094131

RESUMO

Antiretroviral therapy (ART) suppresses HIV-1 replication but fails to cure the infection. The presence of an extremely stable viral latent reservoir, primarily in resting memory CD4+ T cells, remains a major obstacle to viral eradication. The "shock and kill" strategy targets these latently infected cells and boosts immune recognition and clearance, and thus, it is a promising approach for an HIV-1 functional cure. Although some latency-reversing agents (LRAs) have been reported, no apparent clinical progress has been made, so it is still vital to seek novel and effective LRAs. Here, we report that thiostrepton (TSR), a proteasome inhibitor, reactivates latent HIV-1 effectively in cellular models and in primary CD4+ T cells from ART-suppressed individuals ex vivo TSR does not induce global T cell activation, severe cytotoxicity, or CD8+ T cell dysfunction, making it a prospective LRA candidate. We also observed a significant synergistic effect of reactivation when TSR was combined with JQ1, prostratin, or bryostatin-1. Interestingly, six TSR analogues also show reactivation abilities that are similar to or more effective than that of TSR. We further verified that TSR upregulated expression of heat shock proteins (HSPs) in CD4+ T cells, which subsequently activated positive transcriptional elongation factor b (p-TEFb) and NF-κB signals, leading to viral reactivation. In summary, we identify TSR as a novel LRA which could have important significance for applications to an HIV-1 functional cure in the future.


Assuntos
Fármacos Anti-HIV/farmacologia , Antivirais/farmacologia , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Proteínas de Choque Térmico/efeitos dos fármacos , NF-kappa B/efeitos dos fármacos , Fator B de Elongação Transcricional Positiva/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Tioestreptona/farmacologia , Ativação Viral/efeitos dos fármacos , Latência Viral/efeitos dos fármacos , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/virologia , Linhagem Celular , Sinergismo Farmacológico , Infecções por HIV/virologia , Ensaios de Triagem em Larga Escala , Humanos , Estudos Prospectivos
13.
mBio ; 10(5)2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31594817

RESUMO

The presence of an extremely stable latent reservoir of HIV-1 is the major obstacle to eradication, despite effective antiretroviral therapy (ART). Recent studies have shown that clonal expansion of latently infected cells without viral reactivation is an important phenomenon that maintains the long-term stability of the reservoir, yet its underlying mechanism remains unclear. Here we report that a subset of CD4+ T cells, characterized by CD161 expression on the surface, is highly permissive for HIV-1 infection. These cells possess a significantly higher survival and proliferative capacity than their CD161-negative counterparts. More importantly, we found that these cells harbor HIV-1 DNA and replication-competent latent viruses at a significantly higher frequency. By using massive single-genome proviral sequencing from ART-suppressed individuals, we confirm that CD161+ CD4+ T cells contain remarkably more identical proviral sequences, indicating clonal expansion of the viral genome in these cells. Taking the results together, our study identifies infected CD161+ CD4+ T cells to be a critical force driving the clonal expansion of the HIV-1 latent reservoir, providing a novel mechanism for the long-term stability of HIV-1 latency.IMPORTANCE The latent reservoir continues to be the major obstacle to curing HIV-1 infection. The clonal expansion of latently infected cells adds another layer maintaining the long-term stability of the reservoir, but its mechanism remains unclear. Here, we report that CD161+ CD4+ T cells serve as an important compartment of the HIV-1 latent reservoir and contain a significant amount of clonally expanded proviruses. In our study, we describe a feasible strategy that may reduce the size of the latent reservoir to a certain extent by counterbalancing the repopulation and dissemination of latently infected cells.


Assuntos
Antirretrovirais/uso terapêutico , Linfócitos T CD4-Positivos/virologia , Infecções por HIV/virologia , HIV-1/isolamento & purificação , Subfamília B de Receptores Semelhantes a Lectina de Células NK/análise , Resposta Viral Sustentada , Replicação Viral , Adolescente , Adulto , Idoso , Linfócitos T CD4-Positivos/química , Feminino , Infecções por HIV/tratamento farmacológico , HIV-1/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Subpopulações de Linfócitos T/química , Subpopulações de Linfócitos T/virologia , Latência Viral , Adulto Jovem
14.
Elife ; 82019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31397674

RESUMO

The antiviral activity of host factor apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3G (APOBEC3G, A3G) and its degradation mediated by human immunodeficiency virus type 1 (HIV-1) Vif protein are important topics. Although accumulating evidence indicates the importance of deubiquitination enzymes (DUBs) in innate immunity, it is unknown if they participate in A3G stability. Here, we found that USP49 directly interacts with A3G and efficiently removes ubiquitin, consequently increasing A3G protein expression and significantly enhancing its anti-HIV-1 activity. Unexpectedly, A3G degradation was also mediated by a Vif- and cullin-ring-independent pathway, which was effectively counteracted by USP49. Furthermore, clinical data suggested that USP49 is correlated with A3G protein expression and hypermutations in Vif-positive proviruses, and inversely with the intact provirus ratio in the HIV-1 latent reservoir. Our studies demonstrated a mechanism to effectively stabilize A3G expression, which could comprise a target to control HIV-1 infection and eradicate the latent reservoir.


Assuntos
Desaminase APOBEC-3G/metabolismo , HIV-1/crescimento & desenvolvimento , HIV-1/imunologia , Fatores Imunológicos/metabolismo , Ubiquitina Tiolesterase/metabolismo , Ubiquitina/metabolismo , Replicação Viral , Células HEK293 , Células HeLa , Humanos , Imunidade Inata
15.
PLoS One ; 9(8): e105096, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25133393

RESUMO

Spontaneous immune tolerance in mouse liver transplantation has always been a hotspot in transplantation-immune research. Recent studies revealed that regulatory T cells (Tregs), hepatic satellite cells and Kupffer cells play a potential role in spontaneous immune tolerance, however the precise mechanism of spontaneous immune tolerance is still undefined. By using Microarray Chips, we investigated different immune regulatory factors to decipher critical mechanisms of spontaneous tolerance after mouse liver transplantation. Allogeneic (C57BL/6-C3H) and syngeneic (C3H-C3H) liver transplantation were performed by 6-8 weeks old male C57BL/6 and C3H mice. Graft samples (N = 4 each group) were collected from 8 weeks post-operation mice. 11 differentially expressed miRNAs in allogeneic grafts (Allografts) vs. syngeneic grafts (Syngrafts) were identified using Agilent Mouse miRNA Chips. It was revealed that 185 genes were modified by the 11 miRNAs, furthermore, within the 185 target genes, 11 of them were tightly correlated with immune regulation after Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and Genbank data cross-comparison. Verified by real-time PCR and western blot, our results indicated that mRNA expression levels of IL-6 and TAB2 were respectively down regulated following miR-142-3p and miR-155 augment. In addition, increased miR-152 just silenced mRNA of CaMK II and down-regulated translation of CaMK II in tolerated liver grafts, which may play a critical role in immune regulation and spontaneous tolerance induction of mouse liver transplantation.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Tolerância Imunológica/imunologia , Transplante de Fígado , MicroRNAs/fisiologia , Animais , Western Blotting , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Tolerância Imunológica/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA