Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 499
Filtrar
1.
Angew Chem Int Ed Engl ; : e202404401, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729917

RESUMO

It is a crucial role for enhancing the power conversion efficiency (PCE) of perovskite solar cells (PSCs) to prepare high-quality perovskite films, which can be achieved by delaying the crystallization of perovskite film. Hence, we designed difluoroacetic anhydride (DFA) as an additive to regulating crystallization process thus reducing defect formation during perovskite film formation. It was found DFA reacts with DMSO by forming two molecules, difluoroacetate thioether ester (DTE) and difluoroacetic acid (DA). The strong bonding DTE·PbI2 and DA·PbI2 retard perovskite crystallization process for high-quality film formation, which was monitored through in situ UV-vis and PL tests. By using DFA additives, we prepared perovskite films with high-quality and low defects. Finally, a champion PCE of 25.28% was achieved with excellent environmental stability, which retained 95.75% of the initial PCE after 1152 h at 25 °C under 25% RH.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38691111

RESUMO

PURPOSE: Biochemical recurrence (BCR) following radical prostatectomy (RP) is a significant concern for patients with prostate cancer. Reliable prediction models are needed to identify patients at risk for BCR and facilitate appropriate management. This study aimed to develop and validate a clinical-radiomics model based on preoperative [18 F]PSMA-1007 PET for predicting BCR-free survival (BRFS) in patients who underwent RP for prostate cancer. MATERIALS AND METHODS: A total of 236 patients with histologically confirmed prostate cancer who underwent RP were retrospectively analyzed. All patients had a preoperative [18 F]PSMA-1007 PET/CT scan. Radiomics features were extracted from the primary tumor region on PET images. A radiomics signature was developed using the least absolute shrinkage and selection operator (LASSO) Cox regression model. The performance of the radiomics signature in predicting BRFS was assessed using Harrell's concordance index (C-index). The clinical-radiomics nomogram was constructed using the radiomics signature and clinical features. The model was externally validated in an independent cohort of 98 patients. RESULTS: The radiomics signature comprised three features and demonstrated a C-index of 0.76 (95% CI: 0.60-0.91) in the training cohort and 0.71 (95% CI: 0.63-0.79) in the validation cohort. The radiomics signature remained an independent predictor of BRFS in multivariable analysis (HR: 2.48, 95% CI: 1.47-4.17, p < 0.001). The clinical-radiomics nomogram significantly improved the prediction performance (C-index: 0.81, 95% CI: 0.66-0.95, p = 0.007) in the training cohort and (C-index: 0.78 95% CI: 0.63-0.89, p < 0.001) in the validation cohort. CONCLUSION: We developed and validated a novel [18 F]PSMA-1007 PET-based clinical-radiomics model that can predict BRFS following RP in prostate cancer patients. This model may be useful in identifying patients with a higher risk of BCR, thus enabling personalized risk stratification and tailored management strategies.

3.
Adv Mater ; : e2403038, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724029

RESUMO

Perovskite solar cells (PSCs) are developed rapidly in efficiency and stability in recent years, which can compete with silicon solar cells. However, an important obstacle to the commercialization of PSCs is the toxicity of lead ions (Pb2+) from water-soluble perovskites. The entry of free Pb2+ into organisms can cause severe harm to humans, such as blood lead poisoning, organ failure, etc. Therefore, this work reports a "lead isolation-capture" dual detoxification strategy with calcium disodium edetate (EDTA Na-Ca), which can inhibit lead leakage from PSCs under extreme conditions. More importantly, leaked lead exists in a nontoxic aggregation state chelated by EDTA. For the first time, in vivo experiments are conducted in mice to systematically prove that this material has a significant inhibitory effect on the toxicity of perovskites. In addition, this strategy can further enhance device performance, enabling the optimized devices to achieve an impressive power conversion efficiency (PCE) of 25.19%. This innovative strategy is a major breakthrough in the research on the prevention of lead toxicity in PSCs.

4.
Small ; : e2401701, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38705844

RESUMO

Enhancing the intrinsic stability of perovskite and through encapsulation to isolate water, oxygen, and UV-induced decomposition are currently common and most effective strategies in perovskite solar cells. Here, the atomic layer deposition process is employed to deposit a nanoscale (≈100 nm), uniform, and dense Al2O3 film on the front side of perovskite devices, effectively isolating them from the erosion caused by water and oxygen in the humid air. Simultaneously, nanoscale (≈100 nm) TiO2 films are also deposited on the glass surface to efficiently filter out the ultraviolet (UV) light in the light source, which induces degradation in perovskite. Ultimately, throughthe collaborative effects of both aspects, the stability of the devices is significantly improved under conditions of humid air and illumination. As a result, after storing the devices in ambient air for 1000 h, the efficiency only declines to 95%, and even after 662 h of UV exposure, the efficiency remains at 88%, far surpassing the performance of comparison devices. These results strongly indicate that the adopted Al2O3 and TiO2 thin films play a significant role in enhancing the stability of perovskite solar cells, demonstrating substantial potential for widespread industrial applications.

5.
Stem Cell Res ; 77: 103420, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38643711

RESUMO

PPM1A is a member of the serine/threonine protein phosphatase family. It can bind to a variety of proteins to dephosphorylate them, and extensively regulates many life activities such as cell growth, cell stress, immune response, and tumor formation. Here we constructed a human induced pluripotent stem cell (hiPSC) line with knockout of PPM1A using CRISPR/Cas9-mediated gene targeting. This cell line exhibits normal karyotype, pluripotency, and trilineage differentiation potential, which could provide a useful cellular resource for exploring the mechanism of PPM1A in regulating downstream signaling pathways and explore the application of PPM1A in anti-tumor and anti-infection.

6.
J Vet Med Sci ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38644184

RESUMO

We describe here a case of canine mammary benign mixed tumor with sebaceous metaplasia in the right fifth mammary gland of an eight-year-old, intact female Poodle dog. Grossly, the mass was firm with off-white, poorly lobulated cut surfaces. Histologically, the luminal epithelial cells and myoepithelial cells proliferated with cartilage formation and focal squamous metaplasia. Moreover, a large number of nests of various sizes, which were filled with foamy cells in the center and associated with basaloid reserve-like cells in the periphery, showed sebaceous gland-like structures. Immunohistochemically, myoepithelial cells and reserve-like cells in the metaplastic sebaceous gland-like structures were CK14, α-smooth muscle actin (α-SMA) and p63 positive, suggesting a possibility that these two components may have a common cell of origin.

7.
Angew Chem Int Ed Engl ; : e202403739, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565430

RESUMO

Deep-blue perovskite light-emitting diodes (PeLEDs) based on quasi-two-dimensional (quasi-2D) systems exist heightened sensitivity to the domain distribution. The top-down crystallization mode will lead to a vertical gradient distribution of quantum well (QW) structure, which is unfavorable for deep-blue emission. Herein, a thermal gradient annealing treatment is proposed to address the polydispersity issue of vertical QWs in quasi-2D perovskites. The formation of large-n domains at the upper interface of the perovskite film can be effectively inhibited by introducing a low-temperature source in the annealing process. Combined with the utilization of NaBr to inhibit the undesirable n=1 domain, a vertically concentrated QW structure is ultimately attained. As a result, the fabricated device delivers a narrow and stable deep-blue emission at 458 nm with an impressive external quantum efficiency (EQE) of 5.82 %. Green and sky-blue PeLEDs with remarkable EQE of 21.83 % and 17.51 % are also successfully achieved, respectively, by using the same strategy. The findings provide a universal strategy across the entire quasi-2D perovskites, paving the way for future practical application of PeLEDs.

8.
Adv Mater ; : e2400783, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607655

RESUMO

Halide perovskites have shown great potential in X-ray detection due to outstanding optoelectronic properties. However, finding a cost-effective and environmentally sustainable method for handling end-of-life devices has remained challenging. Here, a "One-Click Restart" eco-friendly recycling strategy is introduced for end-of-life perovskite X-ray detectors. This method, utilizing water, allows for the recapture and reuse of both perovskite and conductor materials. The process is straightforward and environmentally friendly, eliminating the need for further chemical treatment, purification, additional additives or catalysts, and complex equipment. A sustainable device cycle is developed by reconstructing flexible perovskite membranes for wearable electronics from recycled materials. Large-scale, flexible membranes made from metal-free perovskite DABCO-N2H5-I3 (DABCO = N-N'-diazabicyclo[2.2.2]octonium) achieve remarkably impressive average sensitivity of 6204 ± 268 µC Gyair -1 cm-2 and a low detection limit of 102.3 nGyair s-1, which makes highly effective for X-ray imaging. The sensitivity of recycled flexible devices not only matches that of single-crystal devices made with fresh materials but also ranks as the highest among all metal-free perovskite X-ray detectors. "One-Click Restart" applies to scalable flexible devices derived from aged single-crystal counterparts, offering significant cost, time, and energy savings compared to their single-crystal equivalents. Such advantages significantly boost future market competitiveness.

9.
Org Lett ; 26(11): 2332-2337, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38478713

RESUMO

A practical synthetic method for the synthesis of vinyl sulfonyl fluorides through copper-promoted direct fluorosulfonylation has been developed. The reaction of the vinylboronic acids with DABSO and then NFSI is performed under mild reaction conditions. This transformation efficiently affords aryl or alkyl vinyl sulfonyl fluorides with good reaction yields, exclusive E-configuration, broad substrate scope, excellent compatibility, and operational simplicity.

10.
Adv Mater ; : e2311562, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507724

RESUMO

A robust perovskite-buried interface is pivotal for achieving high-performance flexible indoor photovoltaics as it significantly influences charge transport and extraction efficiency. Herein, a molecular bridge strategy is introduced utilizing sodium 2-cyanoacetate (SZC) additive at the perovskite-buried interface to simultaneously achieve in situ passivation of interfacial defects and bottom-up crystallization modulation, resulting in high-performance flexible indoor photovoltaic applications. Supported by both theoretical calculations and experimental evidences, it illustrates how SZCs serve as molecular bridges, establishing robust bonds between SnO2 transport layer and perovskite, mitigating oxygen vacancy defects and under-coordinated Pb defects at interface during flexible fabrication. This, in turn, enhances interfacial energy level alignment and facilitates efficient carrier transport. Moreover, this in situ investigation of perovskite crystallization dynamics reveals bottom-up crystallization modulation, extending perovskite growth at the buried interface and influencing subsequent surface recrystallization. This results in larger crystalline grains and improved lattice strain of the perovskite during flexible fabrication. Finally, the optimized flexible solar cells achieve an impressive efficiency exceeding 41% at 1000 lux, with a fill factor as high as 84.32%. The concept of the molecular bridge represents a significant advancement in enhancing the performance of perovskite-based flexible indoor photovoltaics for the upcoming era of Internet of Things (IoT).

11.
Respir Res ; 25(1): 132, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500137

RESUMO

OBJECTIVES: Non-tuberculous mycobacteria (NTM) infection is an increasing health problem due to delaying an effective treatment. However, there are few data on 18F-FDG PET/CT for evaluating the status of NTM patients. The aim of this study was to investigate the potential value of 18F-FDG PET/CT in guiding the treatment strategy of NTM patients. METHODS: We retrospectively analyzed the cases of 23 NTM patients who underwent 18F-FDG PET/CT. The clinical data, including immune status and severity of NTM pulmonary disease (NTM-PD), were reviewed. The metabolic parameters of 18F-FDG included maximum standardized uptake value (SUVmax), SUVmax of the most FDG-avid lesion (SUVTop), SUVTop/SUVmax of the liver (SURLiver), SUVTop/SUVmax of the blood (SURBlood), metabolic lesion volume (MLV), and total lesion glycolysis (TLG). The optimal cut-off values of these parameters were determined using receiver operating characteristic curves. RESULTS: There were 6 patients (26.09%) with localized pulmonary diseases and 17 patients (73.91%) with disseminated diseases. The NTM lesions had high or moderate 18F-FDG uptake (median SUVTop: 8.2 ± 5.7). As for immune status, the median SUVTop in immunocompromised and immunocompetent patients were 5.2 ± 2.5 and 10.0 ± 6.4, respectively, with a significant difference (P = 0.038). As for extent of lesion involvement, SURLiver and SURBlood in localized pulmonary and disseminated diseases were 1.9 ± 1.1 vs. 3.8 ± 1.6, and 2.7 ± 1.8 vs. 5.5 ± 2.6, respectively, with a significant difference (P = 0.016 and 0.026). Moreover, for disease severity, SUVmax of the lung lesion (SUVI-lung) and SUVmax of the marrow (SUVMarrow) in the severe group were 7.7 ± 4.3 and 4.4 ± 2.7, respectively, significantly higher than those in the non-severe group (4.4 ± 2.0 and 2.4 ± 0.8, respectively) (P = 0.027 and 0.036). The ROC curves showed that SUVTop, SURLiver, SURBlood, SUVI-lung, and SUVMarrow had a high sensitivity and specificity for the identification of immune status, lesion extent, and severity of disease in NTM patients. CONCLUSION: 18F-FDG PET/CT is a useful tool in the diagnosis, evaluation of disease activity, immune status, and extent of lesion involvement in NTM patients, and can contribute to planning the appropriate treatment for NTM.


Assuntos
Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Estudos Retrospectivos , Tomografia por Emissão de Pósitrons , Curva ROC
12.
Clin Transplant ; 38(4): e15300, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38555576

RESUMO

Cytomegalovirus (CMV) reactivation remains one of the major and life-threatening complications after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Yet, there is still a lack of safe and effective ways to prevent CMV reactivation in allo-HSCT patients. Here, we retrospectively analyzed a cohort of patients who underwent HSCT at our transplant center between 2018 and 2022 to evaluate the efficacy of prophylactic CMV-specific intravenous immunoglobulin (CMV-IVIg) against CMV reactivation. After Propensity Score Matching, the CMV reactivation rate was significantly decreased in the CMV-IVIg group (HR, 2.952; 95% CI,1.492-5.841; P = .002) compared with the control group. Additionally, the time duration of CMV reactivation (P = .001) and bacterial infection rate (P = .013) were significantly lower in the CMV-IVIg group. Moreover, prophylactic CMV-IVIg was more effective in CMV seropositive patients who received ATG as part of GVHD prevention (HR, 8.225; 95% CI,1.809-37.39; P = .006). In conclusion, CMV-IVIg is considered an effective and safe way to prevent CMV reactivation in HSCT recipients, which may be related to the acceleration of immune reconstitution in the early stage after transplantation.


Assuntos
Infecções por Citomegalovirus , Transplante de Células-Tronco Hematopoéticas , Humanos , Citomegalovirus , Imunoglobulinas Intravenosas/uso terapêutico , Infecções por Citomegalovirus/etiologia , Infecções por Citomegalovirus/prevenção & controle , Infecções por Citomegalovirus/tratamento farmacológico , Estudos Retrospectivos , Transplante Homólogo , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Anticorpos Antivirais
13.
Angew Chem Int Ed Engl ; 63(17): e202400205, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38436587

RESUMO

The perovskite/silicon tandem solar cell (TSC) has attracted tremendous attention due to its potential to breakthrough the theoretical efficiency set for single-junction solar cells. However, the perovskite solar cell (PSC) designed as its top component cell suffers from severe photo-induced halide segregation owing to its mixed-halide strategy for achieving desirable wide-bandgap (1.68 eV). Developing pure-iodide wide-bandgap perovskites is a promising route to fabricate photostable perovskite/silicon TSCs. Here, we report efficient and photostable pure-iodide wide-bandgap PSCs made from an anti-solvent-free (ASF) technique. The ASF process is achieved by mixing two precursor solutions, both of which are capable of depositing corresponding perovskite films without involving anti-solvent. The mixed solution finally forms Cs0.3DMA0.2MA0.5PbI3 perovskite film with a bandgap of 1.68 eV. Furthermore, methylammonium chloride additive is applied to enhance the crystallinity and reduce the trap density of perovskite films. As a result, the pure-iodide wide-bandgap PSC delivers efficiency as high as 21.30 % with excellent photostability, the highest for this type of solar cells. The ASF method significantly improves the device reproducibility as compared with devices made from other anti-solvent methods. Our findings provide a novel recipe to prepare efficient and photostable wide-bandgap PSCs.

14.
ACS Appl Mater Interfaces ; 16(13): 16300-16308, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38513050

RESUMO

Halide perovskites are emerging as promising materials for X-ray detection owing to their compatibility with flexible fabrication, cost-effective solution processing, and exceptional carrier transport behaviors. However, the challenge of removing lead from high-performing perovskites, crucial for wearable electronics, while retaining their superior performance, persists. Here, we present for the first time a highly sensitive and robust flexible X-ray detector utilizing a biocompatible, metal-free perovskite, MDABCO-NH4I3 (MDABCO = methyl-N'-diazabicyclo[2.2.2]octonium). This wearable X-ray detector, based on a MDABCO-NH4I3 thick membrane, exhibits remarkable properties including a large resistivity of 1.13 × 1011 Ω cm, a high mobility-lifetime product (µ-τ) of 1.64 × 10-4 cm2 V-1, and spin Seebeck effect coefficient of 1.9 nV K-1. We achieve a high sensitivity of 6521.6 ± 700 µC Gyair-1 cm-2 and a low detection limit of 77 nGyair s-1, ranking among the highest for biocompatible X-ray detectors. Additionally, the device exhibits effective X-ray imaging at a low dose rate of 1.87 µGyair s-1, which is approximately one-third of the dose rate used in regular medical diagnostics. Crucially, both the MDABCO-NH4I3 thick membrane and the device showcase excellent mechanical robustness. These attributes render the flexible MDABCO-NH4I3 thick membranes highly competitive for next-generation, high-performance, wearable X-ray detection applications.

15.
Adv Mater ; : e2312014, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38380583

RESUMO

Perovskite photovoltaics have emerged as the most promising candidates for next-generation light-to-electricity technology. However, their practical application still suffers from energy loss induced by intrinsic defects within the perovskite lattice. Here, a refined defect passivation in perovskite films is designed, which shows a multi-interaction mechanism between the perovskite and passivator. Interestingly, a shift of molecular bonding is observed upon cooling down the film, leading to a stronger passivation of iodine/formamidine vacancies. Such mechanism on device under low-light and low-temperature conditions is further leveraged and a record efficiency over 45% with durable ambient stability (T90 > 4000 h) is obtained. The pioneer application of perovskite solar cells in above dual extreme conditions in this work reveals the key principles of designing functional groups for the passivators, and also demonstrates the capability of perovskites for diverse terrestrial energy conversion applications in demanding environments such as polar regions and outer space.

16.
ACS Nano ; 18(8): 6513-6522, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38345358

RESUMO

The performance of blue perovskite light-emitting diodes (PeLEDs) lags behind the green and red counterparts owing to high trap density and undesirable red shift of the electroluminescence spectrum under operation conditions. Organic molecular additives were employed as passivators in previous reports. However, most commonly have limited functions, making it challenging to effectively address both efficiency and stability issues simultaneously. Herein, we reported an innovatively dynamic in situ hydrolysis strategy to modulate quasi-2D sky-blue perovskites by the multifunctional passivator phenyl dichlorophosphate that not only passivated the defects but also underwent in situ hydrolysis reaction to stabilize the emission. Moreover, hydrolysis products were beneficial for low-dimensional phase manipulation. Eventually, we obtained high-performance sky-blue PeLEDs with a maximum external quantum efficiency (EQE) of 16.32% and an exceptional luminance of 5740 cd m-2. More importantly, the emission peak of devices located at 485 nm remained stable under different biases. Our work signified the significant advancement toward realizing future applications of PeLEDs.

17.
Front Microbiol ; 15: 1336490, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38389526

RESUMO

Orf virus (ORFV), a typical member of the genus Parapoxvirus, Poxvirus family, causes a contagious pustular dermatitis in sheep, goats, and humans. Poxviruses encode a multisubunit DNA-dependent RNA polymerase (vRNAP) that carries out viral gene expression in the host cytoplasm, which is a viral factor essential to poxvirus replication. Due to its vital role in viral life, vRNAP has emerged as one of the potential drug targets. In the present study, we investigated the antiviral effect of genistein against ORFV infection. We provided evidence that genistein exerted antiviral effect through blocking viral genome DNA transcription/replication and viral protein synthesis and reducing viral progeny, which were dosedependently decreased in genistein-treated cells. Furthermore, we identified that genistein interacted with the vRNAP RPO30 protein by CETSA, molecular modeling and Fluorescence quenching, a novel antiviral target for ORFV. By blocking vRNAP RPO30 protein using antibody against RPO30, we confirmed that the inhibitory effect exerted by genistein against ORFV infection is mediated through the interaction with RPO30. In conclusion, we demonstrate that genistein effectively inhibits ORFV transcription in host cells by targeting vRNAP RPO30, which might be a promising drug candidate against poxvirus infection.

18.
Adv Mater ; : e2313154, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351390

RESUMO

Oxygen is difficult to be physically removed. Oxygen will be excited by light to form free radicals which further attack the lattice of perovskite. The stabilization of α-FAPbI3 against δ-FAPbI3 is the key to optimize perovskite solar cells. Herein, the simple molecule, benzaldehyde (BAH) is adopted. The photochemical shield will be established in perovskite layer. Moreover, heterogeneous nucleation induced by BAH enhances the crystallization of α-FAPbI3 . Consequently, the stability of device is improved significantly. The target device maintains 95% of original power conversion efficiency after 1500 h under air conditions and light-emitting diode light. The power conversion efficiency increases from 23.21% of pristine device to 24.82% of target device.

19.
Int J Biol Macromol ; 263(Pt 2): 129803, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38296147

RESUMO

Acid polysaccharide was extracted from Salvia przewalskii root powders (PSP), purified by diethylaminoethyl cellulose column (DEAE-52) and molecular sieve (PSP2). PSPm1 was obtained by modifying PSP2 with nitrite and phosphoric acid. The chemical structure of PSP2 and PSPm1 exhibited notable distinctions, primarily due to the absence of arabinose and promotion of glucuronic acid (GlcA). The structure of PSPm1 was deduced through the utilization of 1H, 13C, and 2-D NMR. The main chain was linked by α-D-Galp(1 â†’ 3)-α-Glcp-(1 â†’ fragments and →6)-ß-D-Galp fragments, with the presence of →4)-α-D-GlcpA-(1 â†’ 6)-ß-D-Galp-(1 â†’ ï¼Œ â†’ 4)-α-D-GalAp-(1 â†’ 2,4)-α-D-Rhap-(1 â†’ fragments and →6)-α-Glcp-(1 â†’ 2,4)-ß-D-Manp-(1 â†’ fragments. PSPm1 exhibited different immunoregulatory bioactivity in vitro, including haemostatic effects indicated by activated clotting time of 55.5 % reduction by the activated clotting time (ACT) test and wound healing function in vivo. PSPm1 also displayed better anti-tumor biological effects than unmodified. The structure-activity dissimilarity between PSP2 and PSPm1 primarily stems from variations in molecular weight (Mw), monosaccharide composition, and branching patterns. The modification of polysaccharides from the extract residues of Chinese medicinal materials may be a new form of drug supplements.


Assuntos
Monossacarídeos , Polissacarídeos , Polissacarídeos/farmacologia , Polissacarídeos/química , Monossacarídeos/química , Espectroscopia de Ressonância Magnética , Peso Molecular
20.
Angew Chem Int Ed Engl ; 63(7): e202318133, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38168100

RESUMO

Buried interface modification can effectively improve the compatibility between interfaces. Given the distinct interface selections in perovskite solar cells (PSCs), the applicability of a singular modification material remains limited. Consequently, in response to this challenge, we devised a tailored molecular strategy based on the electronic effects of specific functional groups. Therefore, we prepared three distinct silane coupling agents, and due to the varying inductive effects of these functional groups, the electronic distribution and molecular dipole moments of the coupling agents are correspondingly altered. Among them, trimethoxy (3,3,3-trifluoropropyl)-silane (F3 -TMOS), which possesses electron-withdrawing groups, generates a molecular dipole moment directed toward the hole transport layer (HTL). This approach changes the work function of the HTL, optimizes the energy level alignment, reduces the open-circuit voltage loss, and facilitates carrier transport. Furthermore, through the buffering effect of the coupling agent, the interface strain and lattice distortion caused by annealing the perovskite are reduced, enhancing the stability of the tin-based perovskite. Encouragingly, tin PSCs treated with F3 -TMOS achieved a champion efficiency of 14.67 %. This strategy provides an expedient avenue for the design of buried interface modification materials, enabling precise molecular adjustments in accordance with distinct interfacial contexts to ameliorate mismatched energetics and enhance carrier dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA