Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 439: 138129, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38100876

RESUMO

Heat-treated adzuki bean protein hydrolysates exhibit lipid-reducing properties; however, few studies have reported pancreatic lipase (PL) and cholesterol esterase (CE) inhibitory effects and elucidated the underlying mechanisms. In this study, we accomplished the identification of antiobesity peptides through peptide sequencing, virtual screening, and in vitro experiments. Furthermore, the mechanisms were investigated via molecular docking. The findings reveal that the action of pepsin and pancreatin resulted in the transformation of intact adzuki bean protein into smaller peptide fragments. The < 3 kDa fraction exhibited a high proportion of hydrophobic amino acids and displayed superior inhibitory properties for both PL and CE. Five novel antiobesity peptides (LLGGLDSSLLPH, FDTGSSFYNKPAG, IWVGGSGMDM, YLQGFGKNIL, and IFNNDPNNHP) were identified as PL and CE inhibitors. Particularly, IFNNDPNNHP exhibited the most robust biological activity. These peptides exerted their inhibitory action on PL and CE by occupying catalytic or substrate-binding sites through hydrogen bonds, hydrophobic interactions, salt bridges, and π-π stacking.


Assuntos
Vigna , Vigna/genética , Vigna/metabolismo , Esterol Esterase , Hidrolisados de Proteína/química , Simulação de Acoplamento Molecular , Temperatura Alta , Lipase/química , Peptídeos/química
2.
Food Funct ; 14(14): 6749-6750, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37357991

RESUMO

Correction for 'Heat-treated foxtail millet protein delayed the development of pre-diabetes to diabetes in mice by altering gut microbiota and metabolomic profiles' by Han Wang et al., Food Funct., 2023, 14, 4866-4880, https://doi.org/10.1039/D3FO00294B.

3.
Food Funct ; 14(10): 4866-4880, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37133422

RESUMO

Millet protein has gained much attention for its beneficial effects in mitigating metabolic diseases. However, most individuals pass through a prediabetic phase before developing full-blown diabetes, and whether millet protein has hypoglycemic effects on prediabetic mice remains unclear. In the present study, heat-treated foxtail millet protein (HMP) supplementation significantly decreased fasting blood glucose and serum insulin levels, alleviated insulin resistance, and improved impaired glucose tolerance in prediabetic mice. In addition, HMP altered the intestinal flora composition, as evidenced by the reduction in the abundance of Dubosiella and Marvinbryantia and the increase in the content of Lactobacillus, Bifidobacterium, and norank_f_Erysipelotrichaceae. Moreover, HMP supplementation dramatically regulated the levels of serum metabolites (i.e., LysoPCs, 11,14,17-eicosatrienoic acid, and sphingosine) and related metabolic pathways, such as sphingolipid metabolism and pantothenate and CoA biosynthesis. In conclusion, the improvement of gut microbiota and serum metabolic profiles was related to the hypoglycemic potential of HMP in prediabetes.


Assuntos
Microbioma Gastrointestinal , Resistência à Insulina , Estado Pré-Diabético , Setaria (Planta) , Animais , Camundongos , Temperatura Alta , Hipoglicemiantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA