Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3825, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714645

RESUMO

c-di-AMP is an essential and widespread nucleotide second messenger in bacterial signaling. For most c-di-AMP synthesizing organisms, c-di-AMP homeostasis and the molecular mechanisms pertaining to its signal transduction are of great concern. Here we show that c-di-AMP binds the N-acetylglucosamine (GlcNAc)-sensing regulator DasR, indicating a direct link between c-di-AMP and GlcNAc signaling. Beyond its foundational role in cell-surface structure, GlcNAc is attractive as a major nutrient and messenger molecule regulating multiple cellular processes from bacteria to humans. We show that increased c-di-AMP levels allosterically activate DasR as a master repressor of GlcNAc utilization, causing the shutdown of the DasR-mediated GlcNAc signaling cascade and leading to a consistent enhancement in the developmental transition and antibiotic production in Saccharopolyspora erythraea. The expression of disA, encoding diadenylate cyclase, is directly repressed by the regulator DasR in response to GlcNAc signaling, thus forming a self-sustaining transcriptional feedback loop for c-di-AMP synthesis. These findings shed light on the allosteric regulation by c-di-AMP, which appears to play a prominent role in global signal integration and c-di-AMP homeostasis in bacteria and is likely widespread in streptomycetes that produce c-di-AMP.


Assuntos
Acetilglucosamina , Proteínas de Bactérias , Fosfatos de Dinucleosídeos , Regulação Bacteriana da Expressão Gênica , Saccharopolyspora , Transdução de Sinais , Acetilglucosamina/metabolismo , Regulação Alostérica , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Fosfatos de Dinucleosídeos/metabolismo , Saccharopolyspora/metabolismo , Saccharopolyspora/genética
2.
Proteomics ; : e2300350, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491406

RESUMO

Lysine acylation has been extensively investigated due to its regulatory role in a diverse range of biological functions across prokaryotic and eukaryotic species. In-depth acylomic profiles have the potential to enhance comprehension of the biological implications of organisms. However, the extent of research on global acylation profiles in microorganisms is limited. Here, four lysine acylomes were conducted in Bacillus thuringiensis by using the LC-MS/MS based proteomics combined with antibody-enrichment strategies, and a total of 3438 acetylated sites, 5797 propionylated sites, 1705 succinylated sites, and 925 malonylated sites were identified. The motif analysis of these modified proteins revealed a high conservation of glutamate in acetylation and propionylation, whereas such conservation was not observed in succinylation and malonylation modifications. Besides, conservation analysis showed that homologous acylated proteins in Bacillus subtilis and Escherichia coli were connected with ribosome and aminoacyl-tRNA biosynthesis. Further biological experiments showed that lysine acylation lowered the RNA binding ability of CodY and impaired the in vivo protein activity of MetK. In conclusion, our study expanded the current understanding of the global acylation in Bacillus, and the comparative analysis demonstrated that shared acylation proteins could play important roles in regulating both metabolism and RNA transcription progression.

3.
Mol Microbiol ; 119(2): 151-160, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36349384

RESUMO

Actinobacteria have a complex life cycle, including morphological and physiological differentiation which are often associated with the biosynthesis of secondary metabolites. Recently, increased interest in post-translational modifications (PTMs) in these Gram-positive bacteria has highlighted the importance of PTMs as signals that provide functional diversity and regulation by modifying proteins to respond to diverse stimuli. Here, we review the developments in research on acylation, a typical PTM that uses acyl-CoA or related metabolites as donors, as well as the understanding of the direct link provided by acylation between cell metabolism and signal transduction, transcriptional regulation, cell growth, and pathogenicity in Actinobacteria.


Assuntos
Actinobacteria , Virulência , Transdução de Sinais , Acilação , Proteínas , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA