Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Nanomaterials (Basel) ; 14(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38668184

RESUMO

It is usually difficult to realize high mobility together with a low threshold voltage and good stability for amorphous oxide thin-film transistors (TFTs). In addition, a low fabrication temperature is preferred in terms of enhancing compatibility with the back end of line of the device. In this study, α-IGZO TFTs were prepared by high-power impulse magnetron sputtering (HiPIMS) at room temperature. The channel was prepared under a two-step deposition pressure process to modulate its electrical properties. X-ray photoelectron spectra revealed that the front-channel has a lower Ga content and a higher oxygen vacancy concentration than the back-channel. This process has the advantage of balancing high mobility and a low threshold voltage of the TFT when compared with a conventional homogeneous channel. It also has a simpler fabrication process than that of a dual active layer comprising heterogeneous materials. The HiPIMS process has the advantage of being a low temperature process for oxide TFTs.

2.
Environ Res ; 248: 118213, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38280526

RESUMO

Global ocean salinity is changing under rapid climate change and intensified anthropogenic activity. Increased differences in salinity threaten marine biodiversity, organismal survival, and evolution, particularly sessile invertebrates dwelling in highly fluctuating intertidal and estuarine environments. Comparing the responses of closely related species to salinity changes can provide insights into the adaptive mechanisms underlying inter- and intraspecific divergence in salinity tolerance, but are poorly understood in marine bivalves. We collected wild individuals of four Crassostrea species, in addition to two populations of the same species from their native habitats and determined the dynamics of hydrolyzed amino acids (HAAs) and transcriptional responses to hypersaline stress. In response to hypersaline stress, species/populations inhabiting natural high-salinity sea environments showed higher survival and less decline in HAAs than that of congeners inhabiting low-salinity estuaries. Thus, native environmental salinity shapes oyster tolerance. Notably, a strong negative correlation between the decline in HAAs and survival indicated that the HAAs pool could predict tolerance to hypersaline challenge. Four HAAs, including glutamine (Glu), aspartic acid (Asp), alanine (Ala) and glycine (Gly), were identified as key amino acids that contributed substantially to the emergency response to hypersaline stress. High-salinity-adapted oyster species only induced substantial decreases in Glu and Asp, whereas low-salinity-adapted congeners further incresaed Ala and Gly metabolism under hypersaline stress. The dynamics of the content and gene expression responsible for key amino acids pathways revealed the importance of maintaining the balance between energy production and ammonia detoxification in divergent hypersaline responses among oyster species/populations. High constructive or plastic expression of evolutionarily expanded gene copies in high-salinity-adapted species may contribute to their greater hypersaline tolerance. Our findings reveal the adaptive mechanism of key amino acids in salinity adaptation in marine bivalves and provide new avenues for the prediction of adaptive potential and aquaculture with high-salinity tolerant germplasms.


Assuntos
Crassostrea , Humanos , Animais , Crassostrea/genética , Amônia , Aminoácidos , Meio Ambiente , Ecossistema , Salinidade
3.
Front Hum Neurosci ; 17: 1195220, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37529406

RESUMO

Background: Whereas the Montreal Cognitive Assessment (MoCA) and Addenbrooke's cognitive examination-revised (ACE-R) are commonly used tests for the detection of post-stroke cognitive impairment (PSCI), these instruments take 10-30 min to administer and do not assess processing speed, which is a critical impairment in PSCI. MemTrax (MTx) is a continuous recognition test, which evaluates complex information processing, accuracy, speed, and attention, in 2 min. Aim: To evaluate whether MTx is an effective and practical tool for PSCI assessment. Methods: This study enrolled acute ischemic stroke (AIS) patients who have assessed the cognitive status including MTx, clinical dementia rating (CDR), MoCA, Neuropsychiatric Inventory (NPI), Hamilton depression scale (HAMD), Hamilton anxiety scale (HAMA), the National Institute of Health Stroke Scale (NIHSS), modified Rankin scale (mRS), and Barthel Index of activity of daily living (BI) combined with the physical examinations of the neurologic system at the 90-day (D90) after the AIS. The primary endpoint of this study was establishing MTx cut-offs for distinguishing PSCI from AIS. Results: Of the 104 participants, 60 were classified to the PSCI group. The optimized cut-off value of MTx-%C (percent correct) was 78%, with a sensitivity and specificity for detecting PSCI from Non-PSCI of 90.0 and 84.1%, respectively, and an AUC of 0.919. Regarding the MTx-Cp (Composite score = MTx-%C/MTx-RT), using 46.3 as a cut-off value, the sensitivity and specificity for detecting PSCI from Non-PSCI were 80.0 and 93.2%, with an AUC of 0.925. Multivariate linear regression showed that PSCI reduced the MTx-%C (Coef. -14.18, 95% CI -18.41∼-9.95, p < 0.001) and prolonged the MTx-RT (response time) (Coef. 0.29, 95% CI 0.16∼0.43, p < 0.001) and reduced the MTx-CP (Coef. -19.11, 95% CI -24.29∼-13.93, p < 0.001). Conclusion: MemTrax (MTx) is valid and effective for screening for PSCI among target patients and is a potentially valuable and practical tool in the clinical follow-up, monitoring, and case management of PSCI.

4.
Innovation (Camb) ; 4(4): 100464, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37485076

RESUMO

Transcriptional plasticity interacts with natural selection in complex ways and is crucial for the survival of species under rapid climate change. How 3D genome architecture affects transcriptional plasticity and its interaction with genetic adaptation are unclear. We transplanted estuarine oysters to a new environment and found that genes located in active chromatin regions exhibited greater transcriptional plasticity, and changes in these regions were negatively correlated with selective signals. This indicates a trade-off between 3D active regions and selective signals in shaping plastic responses to a new environment. Specifically, a mutation, lincRNA, and changes in the accessibility of a distal enhancer potentially affect its interaction with the ManⅡa gene, which regulates the muscle function and survival of oysters. Our findings reveal that 3D genome architecture compensates for the role of genetic adaptation in environmental response to new environments and provide insights into synergetic genetic and epigenetic interactions critical for fitness-related trait and survival in a model marine species.

5.
Materials (Basel) ; 16(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37241326

RESUMO

Construction of engineering structures in geomaterials with soil-rock mixture (S-RM) is often a challenging task for engineers. When analyzing the stability of the engineering structures, the mechanical properties of S-RM often receive the most attention. To study the mechanical damage evolution characteristics of S-RM under triaxial loading conditions, a modified triaxial apparatus was used to conduct shear test on S-RM, and the change of electrical resistivity was measured simultaneously. The stress-strain-electrical resistivity curve and stress-strain characteristics under different confining pressures were obtained and analyzed. Based on the electrical resistivity, a mechanical damage model was established and verified to analyze the damage evolution regularities of S-RM during shearing. The results show that the electrical resistivity of S-RM decreases with increasing axial strain and that the differences in decrease rates correspond to the different deformation stages of the samples. With the increase in loading confining pressure, the stress-strain curve characteristics change from a slight strain softening to a strong strain hardening. Additionally, an increase in rock content and confining pressure can enhance the bearing capacity of S-RM. Moreover, the derived damage evolution model based on electrical resistivity can accurately characterize the mechanical behavior of S-RM under triaxial shear. Based on the damage variable D, it is found that the damage evolution process of S-RM can be divided into a non-damage stage, a rapid damage stage and a stable damage stage. Furthermore, the structure enhancement factor, which is a model modification parameter for the effect of rock content difference, can accurately predict the stress-strain curves of S-RMs with different rock contents. This study sets the stage for an electrical-resistivity-based monitoring method for studying the evolution of internal damage in S-RM.

6.
Food Res Int ; 162(Pt A): 111948, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36461283

RESUMO

To enhance physiological activity and probiotic availability of sea buckthorn juice, sea buckthorn juice pulp (BHJ) went through fermentation to the fermented (FHJ). In vitro, FHJ displayed better antioxidant and antidiabetic capacities. To further study effects of FHJ on diet-induced metabolic syndrome (MS) and possible mechanisms in vivo, C57BL/6 mice were fed on BHJ and FHJ under high fat diet (HFD). FHJ, rather BHJ, displayed better performance on ameliorating hyperlipidemia, insulin resistance, and oxidative stress in MS. Mechanistically, FHJ intervention significantly reversed the microorganism dysbiosis by restoring the microbial diversity, and modulating obesogenic bacteria abundance, like Oscillospira. Furthermore, fermentation altered FHJ's metabolomics, especially flavonoids, contributing to interactions between FHJ and probiotics, like Akkermansia and Lachnospiraceae. Furthermore, short-chain fatty acids, related to ameliorations of MS, were increased by FHJ. This study demonstrated that interactions between metabolomic alterations in FHJ and microorganisms were vital to attenuate MS.


Assuntos
Microbioma Gastrointestinal , Hippophae , Síndrome Metabólica , Probióticos , Camundongos , Animais , Fermentação , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica/efeitos adversos , Metaboloma
7.
Bone ; 165: 116571, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36174928

RESUMO

Identification of bone erosions and quantification of erosion volume is important for rheumatoid arthritis diagnosis, and can add important information to evaluate disease progression and treatment effects. High-resolution peripheral quantitative computed tomography (HR-pQCT) is well suited for this purpose, however analysis methods are not widely available. The purpose of this study was to develop an open-source software tool for the identification and quantification of bone erosions using images acquired by HR-pQCT. The collection of modules, Bone Analysis Modules (BAM) - Erosion, implements previously published erosion analysis techniques as modules in 3D Slicer, an open-source image processing and visualization tool. BAM includes a module to automatically identify cortical interruptions, from which erosions are manually selected, and a hybrid module that combines morphological and level set operations to quantify the volume of bone erosions. HR-pQCT images of the second and third metacarpophalangeal (MCP) joints were acquired in patients with RA (XtremeCT, n = 14, XtremeCTII, n = 22). The number of cortical interruptions detected by BAM-Erosion agreed strongly with the previously published cortical interruption detection algorithm for both XtremeCT (r2 = 0.85) and XtremeCTII (r2 = 0.87). Erosion volume assessment by BAM-Erosion agreed strongly (r2 = 0.95) with the Medical Image Analysis Framework. BAM-Erosion provides an open-source erosion analysis tool that produces comparable results to previously published algorithms, with improved options for visualization. The strength of the tool is that it implements multiple image processing algorithms for erosion analysis on a single, widely available, open-source platform that can accommodate future updates.


Assuntos
Artrite Reumatoide , Humanos , Artrite Reumatoide/diagnóstico por imagem , Articulação Metacarpofalângica , Tomografia Computadorizada por Raios X/métodos , Processamento de Imagem Assistida por Computador , Progressão da Doença
8.
PLoS One ; 17(8): e0272940, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35969622

RESUMO

Under climate change, the sea surface temperature and salinity change greatly, which poses a considerable threat to sustainable food security. Sea surface temperature and salinity (SST/SSS) are selected to examine the annual output of swimming crab in 24 cities along the eastern China. The Copula-based function was used to construct the probability distribution model of the swimming crab yield with SST and SSS. The pure premium rate of the swimming crab production in these 24 cities are also examined. The results show that 1) There is significant positive correlations between the yield of swimming crab with temperature and salinity over the study area. The only exception is that the correlation between yield of swimming crab and salinity is not significant in the south of study area. 2) The span of the pure insurance premium rate of swimming crab in 24 cities increases rapidly with the increase of the protection level, the maximum span up to 2.04%, and the minimum span is only 1.6%. 3) The distribution of the swimming crab insurance premium rate is various in space. The insurance premium rate of 8 cities in the south of Taizhou is low with the highest premium rate at 5.6%. The insurance premium rate of 16 cities in north of Taizhou is relatively high with the rate between 6%-22%. The research can provide a theoretical basis for the pricing of insurance products for swimming crab in 24 cities in the typical aquaculture areas in eastern China.


Assuntos
Braquiúros , Cubomedusas , Seguro , Animais , Salinidade , Natação , Temperatura
9.
Artigo em Inglês | MEDLINE | ID: mdl-35954736

RESUMO

In the context of the Healthy China 2030 Plan, the importance of the happiness of urban young returnees should not be underestimated. Based on a large-scale social survey of social practices in China, this paper applies a hierarchical linear regression model (HLM) and a structural equation model (SEM) to investigate the determinants of urban young returnees' happiness. The results show that the happiness of urban young returnees in China is not only influenced by their socio-demographic characteristics, such as age and education, but mainly by their occupational development, institutional factors (especially the employment and entrepreneurship policy system) and social factors (physical environment and urban rural relationship), which are different from those of ordinary residents. Further study shows that occupational development indirectly affects the happiness of urban young returnees through relationship adaptation, collective adaptation and material adaptation, the indirect effects accounts for 42.18%, 21.64% and 36.18%, respectively. Institutional factors exert an indirect effect on the happiness of urban young returnees through relationship adaptation (46.80%) and material adaptation (53.20%). Social factors indirectly affect the happiness of urban young returnees through relationship adaptation (44.20%), collective adaptation (16.96%) and material adaptation (38.84%). Policies to improve the happiness of urban young returnees are suggested.


Assuntos
Felicidade , Fatores Sociais , China , Nível de Saúde , Humanos , População Rural
10.
Front Microbiol ; 13: 901979, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783411

RESUMO

Sepsis is a systemic inflammatory response syndrome caused by infection, with high incidence and mortality. Therefore, it is necessary to carry out an effective anti-infection treatment. In this work, we designed and synthesized red blood cell (RBC) membrane-coated PLGA nanoparticles named γ3-RBCNPs, which target the highly expressed intercellular adhesion molecule-1 (ICAM-1) at the site of infection through the γ3 peptide on its surface and kill the Klebsiella pneumoniae through ciprofloxacin encapsulated in its core. In addition, the homogenous RBC membrane coated on the surface of the nanoparticles helps them avoid immune surveillance and prolong the circulation time of the drug in the body. We found that the γ3-RBCNPs target human umbilical vein endothelial cells (HUVECs) activated by TNF-α in vitro and the infected lung of mice in the sepsis model very well. In vitro evaluation suggested that γ3-RBCNPs have a low risk of acute hemolysis and are less likely to be engulfed by macrophages. In vivo evaluation showed that γ3-RBCNPs has a long half-life and good bio-safety. More importantly, we confirmed that γ3-RBCNPs have the good antibacterial and anti-infection ability in vivo and in vitro. Our research provides a new strategy for the nano-drug treatment of Klebsiella pneumoniae-induced sepsis.

11.
Nanomaterials (Basel) ; 12(12)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35745334

RESUMO

Indium tin oxide (ITO) thin films were prepared by high power impulse magnetron sputtering (HiPIMS) and annealed in hydrogen-containing forming gas to reduce the film resistivity. The film resistivity reduces by nearly an order of magnitude from 5.6 × 10-3 Ω·cm for the as-deposited film to the lowest value of 6.7 × 10-4 Ω·cm after annealed at 700 °C for 40 min. The role of hydrogen (H) in changing the film properties was explored and discussed in a large temperature range (300-800 °C). When annealed at a low temperature of 300-500 °C, the incorporated H atoms occupied the oxygen sites (Ho), acting as shallow donors that contribute to the increase of carrier concentration, leading to the decrease of film resistivity. When annealed at an intermediate temperature of 500-700 °C, the Ho defects are thermally unstable and decay upon annealing, leading to the reduction of carrier concentration. However, the film resistivity keeps decreasing due to the increase in carrier mobility. Meanwhile, some locally distributed metallic clusters formed due to the reduction effect of H2. When annealed at a high temperature of 700-800 °C, the metal oxide film is severely reduced and transforms to gaseous metal hydride, leading to the dramatic reduction of film thickness and carrier mobility at 750 °C and vanish of the film at 800 °C.

12.
Sheng Wu Gong Cheng Xue Bao ; 38(5): 1903-1914, 2022 May 25.
Artigo em Chinês | MEDLINE | ID: mdl-35611737

RESUMO

A microbial fuel cell (MFC)-based microbial electrochemical sensor was developed for real-time on-line monitoring of heavy metals in water environment. The microbial electrochemical sensor was constructed with staggered flow distribution method to optimize the parameters such as external resistance value and external circulation rate. The inhibition of concentration of simulated heavy metal wastewater on voltage under optimal parameters was analyzed. The results showed that the best performance of MFC electrochemical sensor was achieved when the external resistance value was 130 Ω and the external circulation rate was 1.0 mL/min. In this case, the microbial electrochemical sensors were responsive to 1-10 mg/L Cu2+, 0.25-1.25 mg/L Cd2+, 0.25-1.25 mg/L Cr6+ and 0.25-1.00 mg/L Hg2+ within 60 minutes. The maximum rejection rates of the output voltage were 92.95%, 73.11%, 82.76% and 75.80%, respectively, and the linear correlation coefficients were all greater than 0.95. In addition, the microbial electrochemical sensor showed a good biological reproducibility. The good performance for detecting heavy metals by the newly developed microbial electrochemical sensor may facilitate the real-time on-line monitoring of heavy metals in water environment.


Assuntos
Fontes de Energia Bioelétrica , Metais Pesados , Eletrodos , Metais Pesados/análise , Reprodutibilidade dos Testes , Águas Residuárias , Água
13.
RSC Adv ; 12(5): 2712-2720, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35425297

RESUMO

The integration of superior mechanical properties and fast healing efficiency for self-healing polyurethane supramolecular elastomers is challenging due to the confliction between high chain mobility for healing and high chain rigidity for mechanical properties. Herein, a strategy to design a "hard-soft" hard domain by the cooperation of quadruple hydrogen bonds (HBs) in the mainchain as restriction units and single HBs in the side chain as diffusion units is reported. The resulting transparent supramolecular elastomer exhibited fast self-recoverability, good puncture resistance and superior mechanical properties with a tensile strength of 20.5 MPa, an extensibility of 2043.7%, a toughness of 146.1 MJ m-3 and a tear resistance of 13.8 kJ m-2. Moreover, the fast self-healing capacity (healing efficiency > 82% within 3 h under moderate condition) was realized due to the soft effects of weak HBs in the side chain on the strong HBs in the mainchain. Taking advantage of the merits of the supramolecular elastomer, a flexible sensor was simply fabricated, which showed good self-repairable and stable sensing properties. Thus, the elastomer has great potential in the field of flexible electronics and wearable devices.

14.
Front Neurol ; 13: 842732, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370922

RESUMO

Background: The dementia and affective disorders are common non-motor features in patients with essential tremor (ET). However, the relationship of ET with cognitive impairments and affective disorders remains controversial. This meta-analysis aimed to analyze the association of ET with dementia and affective disorders. Methods: Original studies published from January 1999 to October 2019 were systematically searched from the database of Medline (OvidSP), EMBASE (OvidSP), and the Cochrane Central Register of Controlled Trials. Pooled standard mean difference (SMD, random effect model), odds ratios (ORs), relative risk (RR), and 95% CI were calculated. Results: Compared with the Non-ET group, patients with ET had significantly lower Mini-Mental State Examination (MMSE) score (SMD, -1.16; 95% CI, -1.75 to -0.58; p = 0.0001) and had significantly higher depressive and anxiety symptoms scale score (SMD, 0.55; 95% CI, 0.22-0.87; p = 0.0009). The OR for dementia and affective disorders in individuals with ET compared with individuals without ET was 2.49 (95% CI, 2.17-2.85, p < 0.00001). While there was no significant difference in Montreal Cognitive Assessment (MoCA) score between ET and Non-ET groups (SMD, -0.52; 95% CI, -0.16 to 0.13; p = 0.23), there was a significant difference in the risk of mortality between ET and Non-ET groups (RR = 4.69, 95% CI, 2.18-10.07). Conclusion: The non-motor symptoms should not be neglected among patients with ET. However, the causal relationship between ET and dementia, depression, and anxiety is unclear.

15.
Nat Commun ; 13(1): 812, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35145117

RESUMO

Structural failures resulting from prolonged low-amplitude loading are particularly problematic. Over the past century a succession of mechanisms have been hypothesized, as experimental validation has remained out of reach. Here we show by atomistic modeling that sustained fatigue crack growth in vacuum requires emitted dislocations to change slip planes prior to their reabsorption into the crack on the opposite side of the loading cycle. By harnessing a new implementation of a concurrent multiscale method we (1) assess the validity of long-hypothesized material separation mechanisms thought to control near-threshold fatigue crack growth in vacuum, and (2) reconcile reports of crack growth in atomistic simulations at loading amplitudes below experimental crack growth thresholds. Our results provide a mechanistic foundation to relate fatigue crack growth tendency to fundamental material properties, e.g. stacking fault energies and elastic moduli, opening the door for improved prognosis and the design of novel fatigue resistance alloys.

16.
Sensors (Basel) ; 22(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35062546

RESUMO

To applicate streaming potential phenomenon to study the seepage feature in the soil-rock mixture (SRM), research on the variation in the streaming potential phenomenon of SRM is the precondition. This paper deals, in assistance with the streaming potential test apparatus, with the streaming potential effect response of SRM subjected to different rock contents. The test results show that when the rock content increases from 10% to 30%, the streaming potential coupling coefficient increases with the increases in rock content at 85% compactness and 0.01 mol L-1 salinity. When the rock content is more than 30%, the streaming potential coupling coefficient decreases with the increases in rock content. As the rock content increases, the permeability coefficient has a negative correlation with the streaming potential coupling coefficient. The streaming potential increases first and then goes down with the increases in rock content, and the streaming potential decreases significantly when the rock content exceeds 50%. The findings indicate that the rock content is the key structural factor that restricts the streaming potential phenomenon of the SRM.

17.
Physiol Plant ; 173(3): 1147-1162, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34343346

RESUMO

Roses are among the most economically important ornamental plants worldwide. But prickles on the stem and leaves cause difficulties for cultivation or inconveniences during harvest and transportation, thus are an undesirable horticultural character. However, little is known about the molecular mechanisms of prickle development. In this study, we sought to develop Rosa multiflora (in the family Rosaceae) as a model plant to study prickle formation. The morphology, structure, and ontogeny of prickles were characterized, and transcriptome analysis of prickly and prickleless R. multiflora genotypes was performed. Morphological observation and microscopic analyses revealed that prickles of R. multiflora were non-glandular prickles (NGPs) and their maturation went through five developmental stages, which was accompanied by the accumulation of secondary metabolites such as lignin and anthocyanins. Comparative transcriptome analysis identified key pathways and hub genes potentially involved in prickle formation. Interestingly, among the differentially expressed genes (DEGs), several notable development and secondary metabolism-related transcription factors (TFs) including NAC, TCP, MYB, homeobox, and WRKY were up-regulated in prickly internodes. KEGG enrichment analysis indicated that DEGs were enriched in the pathways related to biosynthesis of secondary metabolites, flavonoids, and phenylpropanoids in the prickly R. multiflora. Our study provides novel insights into the molecular network underlying the regulation of prickle morphogenesis in R. multiflora, and the identified candidates might be applied to the genetic improvement of roses.


Assuntos
Rosa , Antocianinas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Rosa/genética , Metabolismo Secundário , Transcriptoma/genética
18.
Nanomaterials (Basel) ; 11(4)2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33920231

RESUMO

Indium oxide (In2O3) film has excellent optical and electrical properties, which makes it useful for a multitude of applications. The preparation of In2O3 film via atomic layer deposition (ALD) method remains an issue as most of the available In-precursors are inactive and thermally unstable. In this work, In2O3 film was prepared by ALD using a remote O2 plasma as oxidant, which provides highly reactive oxygen radicals, and hence significantly enhancing the film growth. The substrate temperature that determines the adsorption state on the substrate and reaction energy of the precursor was investigated. At low substrate temperature (100-150 °C), the ratio of chemically adsorbed precursors is low, leading to a low growth rate and amorphous structure of the films. An amorphous-to-crystalline transition was observed at 150-200 °C. An ALD window with self-limiting reaction and a reasonable film growth rate was observed in the intermediate temperature range of 225-275 °C. At high substrate temperature (300-350 °C), the film growth rate further increases due to the decomposition of the precursors. The resulting film exhibits a rough surface which consists of coarse grains and obvious grain boundaries. The growth mode and properties of the In2O3 films prepared by plasma-enhanced ALD can be efficiently tuned by varying the substrate temperature.

19.
Molecules ; 25(21)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143026

RESUMO

In this study, aluminum-doped zinc oxide (Al:ZnO) thin films were grown by high-speed atmospheric atomic layer deposition (AALD), and the effects of air annealing on film properties are investigated. The experimental results show that the thermal annealing can significantly reduce the amount of oxygen vacancies defects as evidenced by X-ray photoelectron spectroscopy spectra due to the in-diffusion of oxygen from air to the films. As shown by X-ray diffraction, the annealing repairs the crystalline structure and releases the stress. The absorption coefficient of the films increases with the annealing temperature due to the increased density. The annealing temperature reaching 600 °C leads to relatively significant changes in grain size and band gap. From the results of band gap and Hall-effect measurements, the annealing temperature lower than 600 °C reduces the oxygen vacancies defects acting as shallow donors, while it is suspected that the annealing temperature higher than 600 °C can further remove the oxygen defects introduced mid-gap states.


Assuntos
Alumínio/química , Membranas Artificiais , Oxigênio/química , Óxido de Zinco/química , Propriedades de Superfície , Difração de Raios X
20.
Materials (Basel) ; 13(18)2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32899677

RESUMO

Zinc oxide (ZnO) has drawn much attention due to its excellent optical and electrical properties. In this study, ZnO film was prepared by a high-deposition-rate spatial atomic layer deposition (ALD) and subjected to a post-annealing process to suppress the intrinsic defects and improve the crystallinity and film properties. The results show that the film thickness increases with annealing temperature owing to the increment of oxide layer caused by the suppression of oxygen vacancy defects as indicated by the X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) spectra. The film transmittance is seldom influenced by annealing. The refractive index increases with annealing temperature at 300-700 °C, possibly due to higher density and crystallinity of the film. The band gap decreases after annealing, which should be ascribed to the decrease in carrier concentration according to Burstein-Moss model. The carrier concentration decreases with increasing annealing temperature at 300-700 °C since the oxygen vacancy defects are suppressed, then it increases at 800 °C possibly due to the out-diffusion of oxygen atoms from the film. Meanwhile, the carrier mobility increases with temperature due to higher crystallinity and larger crystallite size. The film resistivity increases at 300-700 °C then decreases at 800 °C, which should be ascribed primarily to the variation of carrier concentration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA