Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 280(Pt 3): 136009, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39332555

RESUMO

Sugarcane is an important sugar and energy crop. Breeding varieties with high yield and sugar, strong stress tolerance, as well as beneficial for mechanized harvesting are the goal of sugarcane breeder. In the present study, transcriptomics and metabolomics were conducted to explore the molecular basis for outstanding performance of five elite varieties GT42, GT44, LC05-136, YZ08-1609, and YZ05-51, along with the cross-parent CP72-1210 compared to ROC22. Transcriptomics revealed a total of 18,353 differentially expressed genes (DEGs) and several regulatory pathways, including carbon fixation, starch and sucrose metabolism, phenylpropanoids biosynthesis, flavonoid biosynthesis, cysteine and methionine metabolism, as well as zeatin biosynthesis. Expression patterns of genes involved in these pathways confirmed their role in determining the agronomic traits. Besides, metabolomics disclosed 175 differentially accumulated metabolites (DAMs), including specific metabolites of amino acids and secondary metabolites. Furthermore, conjoint analysis of transcriptomics and metabolomics highlighted the manipulation of 113 genes led to changed levels of 20 metabolites associated with carbon fixation, sucrose accumulation, phytohormone response and secondary metabolism. Finally, we depicted here a blueprint outlining the genetic basis underlying the desirable traits in sugarcane. This study will accelerate the dissection of the molecular basis for sugarcane traits and provide targets for molecular breeding.

2.
Front Plant Sci ; 15: 1413108, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38807781

RESUMO

Sugarcane, a significant cash crop in tropical and subtropical regions, contributes to 80% of sugar production and 40% of bioethanol production in the world. It is a key sugar crop, accounting for 85% of sugar production in China. Developing new varieties with high yield, high sugar, and better stress resistance is crucial for the sustainable growth of sugar industry. Hybrid breeding is the most widely used and effective method, with over 98% of Chinese sugarcane varieties resulting from this approach. Over the past two decades, Chinese breeders have developed the theory of high-heterogeneous composite high-sugar breeding, leading to the successful breeding of the fifth-generation sugarcane varieties. Among them, YZ08-1609, a complex hybrid of Saccharum spp., was developed by Sugarcane Research Institute (YSRI) of Yunnan Academy of Agricultural Sciences. The average cane yield of YZ08-1609 was 14.4% higher than ROC22. It is highly resistant to mosaic disease, and highly tolerant to drought stress, but moderately susceptible to smut disease. Notably, YZ08-1609 stands out with a sucrose content of 20.3%, setting an international record, earning the reputation as "King of Sugar". To summarize experience and inspire breeding, we provided here the detailed insights into the selection of parents, breeding process, and characteristics of YZ08-1609. Besides, the biological mechanisms underlying its high yield and high sugar was excavated at both transcriptional and metabolic levels. The challenges and prospects in breeding sugarcane varieties especially with high sugar were also discussed, offering a foundation for the future development of high-sugar varieties.

3.
Heliyon ; 10(7): e28531, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38586380

RESUMO

Improvement of sugarcane is hampered due to its narrow genetic base, and the difficulty in synchronizing flowering further hinders the exploitation of the genetic potential of available germplasm resources. Therefore, the continuous evaluation and optimization of flowering control and induction techniques are vital for sugarcane improvement. In view of this, the review was conducted to investigate the current understanding of photoperiodic and lighting treatment effects on sugarcane flowering and its genetic regulation. Photoperiod facilities have made a significant contribution to flowering control in sugarcane; however, inductive photoperiods are still unknown for some genotypes, and some intended crosses are still impossible to produce because of unresponsive varieties. The effectiveness of lower red/far-red ratios in promoting sugarcane flowering has been widely understood. Furthermore, there is vast potential for utilizing blue, red, and far-red light wavelengths in the flowering control of sugarcane. In this context, light-emitting diodes (LEDs) remain efficient sources of light. Therefore, the combined use of photoperiod regimes with different light wavelengths and optimization of such treatment combinations might help to control and induce flowering in sugarcane parental clones. In sugarcane, FLOWERING LOCUS T (ScFT) orthologues from ScFT1 to ScFT13 have been identified, and interestingly, ScFT3 has evidently been identified as a floral inducer in sugarcane. However, independent assessments of different FT-like gene family members are recommended to comprehensively understand their role in the regulation of flowering. Similarly, we believe this review provides substantial information that is vital for the manipulation of flowering and exploitation of germplasm resources in sugarcane breeding.

4.
Front Plant Sci ; 15: 1375934, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525140

RESUMO

Sugarcane is the most important sugar and energy crop in the world. During sugarcane breeding, technology is the requirement and methods are the means. As we know, seed is the cornerstone of the development of the sugarcane industry. Over the past century, with the advancement of technology and the expansion of methods, sugarcane breeding has continued to improve, and sugarcane production has realized a leaping growth, providing a large amount of essential sugar and clean energy for the long-term mankind development, especially in the face of the future threats of world population explosion, reduction of available arable land, and various biotic and abiotic stresses. Moreover, due to narrow genetic foundation, serious varietal degradation, lack of breakthrough varieties, as well as long breeding cycle and low probability of gene polymerization, it is particularly important to realize the leapfrog development of sugarcane breeding by seizing the opportunity for the emerging Breeding 4.0, and making full use of modern biotechnology including but not limited to whole genome selection, transgene, gene editing, and synthetic biology, combined with information technology such as remote sensing and deep learning. In view of this, we focus on sugarcane breeding from the perspective of technology and methods, reviewing the main history, pointing out the current status and challenges, and providing a reasonable outlook on the prospects of smart breeding.

5.
Heliyon ; 10(5): e27277, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38463882

RESUMO

Sugars transported from leaves (source) to stems (sink) energize cell growth, elongation, and maintenance. which are regulated by a variety of genes. This review reflects progress and prospects in the regulatory mechanism for maximum sucrose accumulation, including the role of sucrose metabolizing enzymes, sugar transporters and the elucidation of post-transcriptional control of sucrose-induced regulation of translation (SIRT) in the accumulation of sucrose. The current review suggests that SIRT is emerging as a significant mechanism controlling Scbzip44 activities in response to endogenous sugar signals (via the negative feedback mechanism). Sucrose-controlled upstream open reading frame (SC-uORF) exists at the 5' leader region of Scbzip44's main ORF, which inhibits sucrose accumulation through post-transcriptional regulatory mechanisms. Sucrose transporters (SWEET1a/4a/4b/13c, TST, SUT1, SUT4 and SUT5) are crucial for sucrose translocation from source to sink. Particularly, SWEET13c was found to be a major contributor to the efflux in the transportation of stems. Tonoplast sugar transporters (TSTs), which import sucrose into the vacuole, suggest their tissue-specific role from source to sink. Sucrose cleavage has generally been linked with invertase isozymes, whereas sucrose synthase (SuSy)-catalyzed metabolism has been associated with biosynthetic processes such as UDP-Glc, cellulose, hemicellulose and other polymers. However, other two key sucrose-metabolizing enzymes, such as sucrose-6-phosphate phosphohydrolase (S6PP) and sucrose phosphate synthase (SPS) isoforms, have been linked with sucrose biosynthesis. These findings suggest that manipulation of genes, such as overexpression of SPS genes and sucrose transporter genes, silencing of the SC-uORF of Scbzip44 (removing the 5' leader region of the main ORF that is called SIRT-Insensitive) and downregulation of the invertase genes, may lead to maximum sucrose accumulation. This review provides an overview of sugarcane sucrose-regulating systems and baseline information for the development of cultivars with higher sucrose accumulation.

7.
PLoS One ; 15(6): e0233752, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32526769

RESUMO

Sugarcane (Saccharum spp.) is an important economic crop, supplying up to 80% of the table sugar and ~60% of bio-ethanol worldwide. Due to population growth and dwindling fossil-fuel reserves, the demand for sugar and bio-ethanol requires significant improvement in sugarcane production. Breeding sugarcane cultivars with high-performance agronomic traits is undoubtedly the most efficient way to achieve this goal. Therefore, evaluating agronomic traits and dissecting underlying loci are critically important for this aim steps in providing genetic resources and molecular markers for selection. In this study, we assembled a diversity panel of 236 elite sugarcane germplasms originally collected from 12 countries. We evaluated 28 agronomic traits in the diversity panel with three replicates. The diversity panel was genotyped using amplified fragment length polymorphism markers, and a total of 1,359 markers were generated. Through the genome-wide association study, we identified three markers significantly associated with three traits evaluated at a stringent threshold (P < 0.05 after Bonferroni correction). The genotypes of the three associated markers grouped respective trait values into two distinct groups, supporting the reliability of these markers for breeding selection. Our study provides putative molecular markers linked to agronomic traits for breeding robust sugarcane cultivars. Additionally, this study emphasized the importance of sugarcane germplasm introduced from other countries and suggested that the use of these germplasms in breeding programs depends on local industrial needs.


Assuntos
Produtos Agrícolas/genética , Polimorfismo Genético , Saccharum/genética , Sementes/genética , Produtos Agrícolas/crescimento & desenvolvimento , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Locos de Características Quantitativas , Característica Quantitativa Herdável , Saccharum/crescimento & desenvolvimento , Sementes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA