Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Acta Biochim Biophys Sin (Shanghai) ; 55(10): 1551-1560, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37439022

RESUMO

Microtubules are hollow α/ß-tubulin heterodimeric polymers that play critical roles in cells. In vertebrates, both α- and ß-tubulins have multiple isotypes encoded by different genes, which are intrinsic factors in regulating microtubule functions. However, the structures of microtubules composed of different tubulin isotypes, especially α-tubulin isotypes, remain largely unknown. Here, we purify recombinant tubulin heterodimers composed of different mouse α-tubulin isotypes, including α1A, α1C and α4A, with the ß-tubulin isotype ß2A. We further assemble and determine the cryo-electron microscopy (cryo-EM) structures of α1A/ß2A, α1C/ß2A, and α4A/ß2A microtubules. Our structural analysis demonstrates that α4A/ß2A microtubules exhibit longitudinal contraction between tubulin interdimers compared with α1A/ß2A and α1C/ß2A microtubules. Collectively, our findings reveal that α-tubulin isotype composition can tune microtubule structures, and also provide evidence for the "tubulin code" hypothesis.


Assuntos
Microtúbulos , Tubulina (Proteína) , Animais , Camundongos , Tubulina (Proteína)/química , Tubulina (Proteína)/genética , Microscopia Crioeletrônica , Microtúbulos/fisiologia
2.
Commun Biol ; 6(1): 531, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37193829

RESUMO

The eukaryotic chaperonin TRiC/CCT assists the folding of about 10% of cytosolic proteins through an ATP-driven conformational cycle, and the essential cytoskeleton protein tubulin is the obligate substrate of TRiC. Here, we present an ensemble of cryo-EM structures of endogenous human TRiC throughout its ATPase cycle, with three of them revealing endogenously engaged tubulin in different folding stages. The open-state TRiC-tubulin-S1 and -S2 maps show extra density corresponding to tubulin in the cis-ring chamber of TRiC. Our structural and XL-MS analyses suggest a gradual upward translocation and stabilization of tubulin within the TRiC chamber accompanying TRiC ring closure. In the closed TRiC-tubulin-S3 map, we capture a near-natively folded tubulin-with the tubulin engaging through its N and C domains mainly with the A and I domains of the CCT3/6/8 subunits through electrostatic and hydrophilic interactions. Moreover, we also show the potential role of TRiC C-terminal tails in substrate stabilization and folding. Our study delineates the pathway and molecular mechanism of TRiC-mediated folding of tubulin along the ATPase cycle of TRiC, and may also inform the design of therapeutic agents targeting TRiC-tubulin interactions.


Assuntos
Adenosina Trifosfatases , Dobramento de Proteína , Humanos , Adenosina Trifosfatases/metabolismo , Tubulina (Proteína)/metabolismo , Microscopia Crioeletrônica , Modelos Moleculares
3.
Sci Adv ; 9(11): eade1207, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36921056

RESUMO

The cytoskeletal proteins tubulin and actin are the obligate substrates of TCP-1 ring complex/Chaperonin containing TCP-1 (TRiC/CCT), and their folding involves co-chaperone. Through cryo-electron microscopy analysis, we present a more complete picture of TRiC-assisted tubulin/actin folding along TRiC adenosine triphosphatase cycle, under the coordination of co-chaperone plp2. In the open S1/S2 states, plp2 and tubulin/actin engaged within opposite TRiC chambers. Notably, we captured an unprecedented TRiC-plp2-tubulin complex in the closed S3 state, engaged with a folded full-length ß-tubulin and loaded with a guanosine triphosphate, and a plp2 occupying opposite rings. Another closed S4 state revealed an actin in the intermediate folding state and a plp2. Accompanying TRiC ring closure, plp2 translocation could coordinate substrate translocation on the CCT6 hemisphere, facilitating substrate stabilization and folding. Our findings reveal the folding mechanism of the major cytoskeletal proteins tubulin/actin under the coordination of the biogenesis machinery TRiC and plp2 and extend our understanding of the links between cytoskeletal proteostasis and related human diseases.


Assuntos
Actinas , Proteínas do Citoesqueleto , Proteínas com Domínio MARVEL , Tubulina (Proteína) , Humanos , Actinas/metabolismo , Microscopia Crioeletrônica , Proteínas com Domínio MARVEL/metabolismo , Chaperonas Moleculares/metabolismo , Dobramento de Proteína , Proteolipídeos , Tubulina (Proteína)/metabolismo , Proteínas do Citoesqueleto/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(14): e2209917120, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36989299

RESUMO

While most therapeutic research on G-protein-coupled receptors (GPCRs) focuses on receptor activation by (endogenous) agonists, significant therapeutic potential exists through agonist-independent intrinsic constitutive activity that can occur in various physiological and pathophysiological settings. For example, inhibiting the constitutive activity of 5-HT6R-a receptor that is found almost exclusively in the brain and mediates excitatory neurotransmission-has demonstrated a therapeutic effect on cognitive/memory impairment associated with several neuropsychiatric disorders. However, the structural basis of such constitutive activity remains unclear. Here, we present a cryo-EM structure of serotonin-bound human 5-HT6R-Gs heterotrimer at 3.0-Å resolution. Detailed analyses of the structure complemented by comprehensive interrogation of signaling illuminate key structural determinants essential for constitutive 5-HT6R activity. Additional structure-guided mutagenesis leads to a nanobody mimic Gαs for 5-HT6R that can reduce its constitutive activity. Given the importance of 5-HT6R for a large number of neuropsychiatric disorders, insights derived from these studies will accelerate the design of more effective medications, and shed light on the molecular basis of constitutive activity.


Assuntos
Receptores de Serotonina , Serotonina , Humanos , Receptores de Serotonina/metabolismo , Encéfalo/metabolismo , Transdução de Sinais
5.
Nat Commun ; 12(1): 739, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33531497

RESUMO

The proteasome activator PA28αß affects MHC class I antigen presentation by associating with immunoproteasome core particles (iCPs). However, due to the lack of a mammalian PA28αß-iCP structure, how PA28αß regulates proteasome remains elusive. Here we present the complete architectures of the mammalian PA28αß-iCP immunoproteasome and free iCP at near atomic-resolution by cryo-EM, and determine the spatial arrangement between PA28αß and iCP through XL-MS. Our structures reveal a slight leaning of PA28αß towards the α3-α4 side of iCP, disturbing the allosteric network of the gatekeeper α2/3/4 subunits, resulting in a partial open iCP gate. We find that the binding and activation mechanism of iCP by PA28αß is distinct from those of constitutive CP by the homoheptameric TbPA26 or PfPA28. Our study sheds lights on the mechanism of enzymatic activity stimulation of immunoproteasome and suggests that PA28αß-iCP has experienced profound remodeling during evolution to achieve its current level of function in immune response.


Assuntos
Microscopia Crioeletrônica/métodos , Complexo de Endopeptidases do Proteassoma/imunologia , Complexo de Endopeptidases do Proteassoma/ultraestrutura , Apresentação de Antígeno/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo
6.
Nat Commun ; 12(1): 264, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431876

RESUMO

The ongoing pandemic of coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Neutralizing antibodies against SARS-CoV-2 are an option for drug development for treating COVID-19. Here, we report the identification and characterization of two groups of mouse neutralizing monoclonal antibodies (MAbs) targeting the receptor-binding domain (RBD) on the SARS-CoV-2 spike (S) protein. MAbs 2H2 and 3C1, representing the two antibody groups, respectively, bind distinct epitopes and are compatible in formulating a noncompeting antibody cocktail. A humanized version of the 2H2/3C1 cocktail is found to potently neutralize authentic SARS-CoV-2 infection in vitro with half inhibitory concentration (IC50) of 12 ng/mL and effectively treat SARS-CoV-2-infected mice even when administered at as late as 24 h post-infection. We determine an ensemble of cryo-EM structures of 2H2 or 3C1 Fab in complex with the S trimer up to 3.8 Å resolution, revealing the conformational space of the antigen-antibody complexes and MAb-triggered stepwise allosteric rearrangements of the S trimer, delineating a previously uncharacterized dynamic process of coordinated binding of neutralizing antibodies to the trimeric S protein. Our findings provide important information for the development of MAb-based drugs for preventing and treating SARS-CoV-2 infections.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacologia , Anticorpos Antivirais/química , Anticorpos Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , SARS-CoV-2/efeitos dos fármacos , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/uso terapêutico , Microscopia Crioeletrônica , Mapeamento de Epitopos , Epitopos , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Ligação Proteica/efeitos dos fármacos , Conformação Proteica , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia
7.
Sci Adv ; 7(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33277323

RESUMO

The recent outbreaks of SARS-CoV-2 pose a global health emergency. The SARS-CoV-2 trimeric spike (S) glycoprotein interacts with the human ACE2 receptor to mediate viral entry into host cells. We report the cryo-EM structures of a tightly closed SARS-CoV-2 S trimer with packed fusion peptide and an ACE2-bound S trimer at 2.7- and 3.8-Å resolution, respectively. Accompanying ACE2 binding to the up receptor-binding domain (RBD), the associated ACE2-RBD exhibits continuous swing motions. Notably, the SARS-CoV-2 S trimer appears much more sensitive to the ACE2 receptor than the SARS-CoV S trimer regarding receptor-triggered transformation from the closed prefusion state to the fusion-prone open state, potentially contributing to the superior infectivity of SARS-CoV-2. We defined the RBD T470-T478 loop and Y505 as viral determinants for specific recognition of SARS-CoV-2 RBD by ACE2. Our findings depict the mechanism of ACE2-induced S trimer conformational transitions from the ground prefusion state toward the postfusion state, facilitating development of anti-SARS-CoV-2 vaccines and therapeutics.


Assuntos
Enzima de Conversão de Angiotensina 2/química , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Animais , Microscopia Crioeletrônica , Ensaio de Imunoadsorção Enzimática , Humanos , Processamento de Imagem Assistida por Computador , Ligantes , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Peptídeos/química , Polissacarídeos , Análise de Componente Principal , Ligação Proteica , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA