Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 150: 107535, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38865859

RESUMO

Phenylarsine oxide (PAO) is a known environmental pollutant and skin keratinocytes are most seriously affected. Baicalin (BCN) was reported to have antioxidant and anti-inflammatory effects, but its protective effect against PAO toxicity is unknown. This study aimed at exploring whether baicalin can reverse the toxicity of human epidermal keratinocytes that are subjected to PAO exposure and underlying mechanisms. In silico analysis from a publicly accessible HaCaT cell transcriptome dataset exposed to chronic Arsenic showed significant differential expression of several genes, including the genes related to DNA replication. Later, we performed in vitro experiments, in which HaCaT cells were exposed to PAO (500 nM) in the existence of BCN (10-50 µM). Treatment of PAO alone induces the JNK, p38 and caspase-3 activation, which were engaged in the apoptosis induction, while the activity of AKT was significantly inhibited, which was engaged in the suppression of apoptosis. PAO suppressed SIRT3 expression and induced intracellular reactive oxygen species (ROS), causing a marked reduce in cell viability and apoptosis. However, BCN treatment restored the PAO-induced suppression of SIRT3 and AKT expression, reduced intracellular ROS generation, and markedly suppressed both caspase-3 activation and apoptosis induction. However, the protective effect of BCN was significantly attenuated after pretreatment with nicotinamide, an inhibitor of SIRT3. These findings indicate that BCN protects against cell death induced by PAO via inhibiting excessive intracellular ROS generation via restoring SIRT3 activity and reactivating downstream AKT pathway. In this study, we firstly shown that BCN is an efficient drug to prevent PAO-induced skin cytotoxicity, and these findings need to be confirmed by in vivo and clinical investigations.


Assuntos
Apoptose , Arsenicais , Sobrevivência Celular , Flavonoides , Queratinócitos , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Flavonoides/farmacologia , Flavonoides/química , Arsenicais/farmacologia , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Estrutura Molecular , Relação Dose-Resposta a Droga , Substâncias Protetoras/farmacologia , Substâncias Protetoras/química , Relação Estrutura-Atividade , Pele/efeitos dos fármacos , Pele/patologia
2.
Molecules ; 28(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37375218

RESUMO

Idiopathic pulmonary fibrosis is a progressive, irreversible lung disease that leads to respiratory failure and death. Vincamine is an indole alkaloid obtained from the leaves of Vinca minor and acts as a vasodilator. The present study aims to investigate the protective activity of vincamine against EMT in bleomycin (BLM)-induced pulmonary fibrosis via assessing the apoptotic and TGF-ß1/p38 MAPK/ERK1/2 signaling pathways. In bronchoalveolar lavage fluid, protein content, total cell count, and LDH activity were evaluated. N-cadherin, fibronectin, collagen, SOD, GPX, and MDA levels were determined in lung tissue using ELISA. Bax, p53, bcl2, TWIST, Snai1, and Slug mRNA levels were examined using qRT-PCR. Western blotting was used to assess the expression of TGF-ß1, p38 MAPK, ERK1/2, and cleaved caspase 3 proteins. H & E and Masson's trichrome staining were used to analyze histopathology. In BLM-induced pulmonary fibrosis, vincamine reduced LDH activity, total protein content, and total and differential cell count. SOD and GPX were also increased following vincamine treatment, while MDA levels were decreased. Additionally, vincamine suppressed the expression of p53, Bax, TWIST, Snail, and Slug genes as well as the expression of factors such as TGF-ß1, p/t p38 MAPK, p/t ERK1/2, and cleaved caspase 3 proteins, and, at the same time, vincamine increased bcl2 gene expression. Moreover, vincamine restored fibronectin, N-Catherine, and collagen protein elevation due to BLM-induced lung fibrosis. In addition, the histopathological examination of lung tissues revealed that vincamine attenuated the fibrotic and inflammatory conditions. In conclusion, vincamine suppressed bleomycin-induced EMT by attenuating TGF-ß1/p38 MAPK/ERK1/2/TWIST/Snai1/Slug/fibronectin/N-cadherin pathway. Moreover, it exerted anti-apoptotic activity in bleomycin-induced pulmonary fibrosis.


Assuntos
Fibrose Pulmonar , Vincamina , Ratos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Bleomicina/efeitos adversos , Fator de Crescimento Transformador beta1/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Caspase 3/metabolismo , Transição Epitelial-Mesenquimal , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Pulmão/metabolismo , Colágeno/metabolismo , Superóxido Dismutase/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
3.
Mol Med Rep ; 27(2)2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36601752

RESUMO

The cell­killing potential of most chemotherapeutic agents is enhanced by a temperature elevation. Isofraxidin (IF) is a coumarin compound widely found in plants, such as the Umbelliferae or Chloranthaceae families. IF induces anticancer effects in lung and colorectal cancer. To the best of our knowledge, the combined effects of hyperthermia (HT) and IF on heat­induced apoptosis have not been reported. Acute monocytic leukemia U937 cells were exposed to HT with or without IF pre­treatment. Apoptosis was measured by Annexin V­FITC/PI double staining assay using flow cytometry and cell viability was observed by cell counting kit assay, DNA fragmentation. The mechanism involved in the combination was explored by measuring changes in the mitochondrial membrane potential, (MMP), intracellular ROS generation, expression of apoptosis related protein, and intracellular calcium ion level. It was demonstrated that IF enhanced HT­induced apoptosis in U937 cells. The results demonstrated that combined treatment enhanced mitochondrial membrane potential loss and transient superoxide generation increased protein expression levels of caspase­3, caspase­8 and phosphorylated­JNK and intracellular calcium levels. Moreover, the role of caspases and JNK was confirmed using a pan caspase inhibitor (zVAD­FMK) and JNK inhibitor (SP600125) in U937 cells. Collectively, the data demonstrated that IF enhanced HT­induced apoptosis via a reactive oxygen species mediated mitochondria/caspase­dependent pathway in U937 cells.


Assuntos
Hipertermia Induzida , Leucemia Monocítica Aguda , Humanos , Células U937 , Cálcio/metabolismo , Apoptose , Cumarínicos/farmacologia , Caspases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Oxirredução , Potencial da Membrana Mitocondrial
4.
Molecules ; 27(22)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36431925

RESUMO

Metastatic breast cancer is an incurable form of breast cancer that exhibits high levels of epithelial-mesenchymal transition (EMT) markers. Angiotensin II has been linked to various signaling pathways involved in tumor cell growth and metastasis. The aim of this study is to investigate, for the first time, the anti-proliferative activity of azilsartan, an angiotensin II receptor blocker, against breast cancer cell lines MCF-7 and MDA-MB-231 at the molecular level. Cell viability, cell cycle, apoptosis, colony formation, and cell migration assays were performed. RT-PCR and western blotting analysis were used to explain the molecular mechanism. Azilsartan significantly decreased the cancer cells survival, induced apoptosis and cell cycle arrest, and inhibited colony formation and cell migration abilities. Furthermore, azilsartan reduced the mRNA levels of NF-kB, TWIST, SNAIL, SLUG and bcl2, and increased the mRNA level of bax. Additionally, azilsartan inhibited the expression of IL-6, JAK2, STAT3, MMP9 and bcl2 proteins, and increased the expression of bax, c-PARP and cleaved caspase 3 protein. Interestingly, it reduced the in vivo metastatic capacity of MDA-MBA-231 breast cancer cells. In conclusion, the present study revealed, for the first time, the anti-proliferative, apoptotic, anti-migration and EMT inhibition activities of azilsartan against breast cancer cells through modulating NF-kB/IL-6/JAK2/STAT3/MMP9, TWIST/SNAIL/SLUG and apoptosis signaling pathways.


Assuntos
Neoplasias da Mama , Transição Epitelial-Mesenquimal , Humanos , Feminino , NF-kappa B/metabolismo , Interleucina-6/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proteína X Associada a bcl-2/metabolismo , Linhagem Celular Tumoral , RNA Mensageiro , Janus Quinase 2/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
5.
Molecules ; 27(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36432094

RESUMO

Fluoroquinolones (FQs) are synthetic broad-spectrum antimicrobial agents that have been recently repurposed to anticancer candidates. Designing new derivatives of FQs with different moieties to target DNA topoisomerases could improve their anticancer efficacy. The present study aimed to synthesize a novel ciprofloxacin derivative, examine its anticancer activity against HepG2 and A549 cancer cells, and investigate the possible molecular mechanism underlying this activity by examining its ability to inhibit the topo I/II activity and to induce the apoptotic and necro-apoptotic pathways. Molecular docking, cell viability, cell migration, colony formation, cell cycle, Annexin V, lactate dehydrogenase (LDH) release, ELISA, and western blotting assays were utilized. Molecular docking results showed that this novel ciprofloxacin derivative exerted dual topo I and topo II binding and inhibition. It significantly inhibited the proliferation of A549 and HepG2 cancer cells and decreased their cell migration and colony formation abilities. In addition, it significantly increased the % of apoptotic cells, caused cell cycle arrest at G2/M phase, and elevated the LDH release levels in both cancer cells. Furthermore, it increased the expression of cleaved caspase 3, RIPK1, RIPK3, and MLKL proteins. This novel ciprofloxacin derivative exerted substantial dual inhibition of topo I/II enzyme activities, showed antiproliferative activity, suppressed the cell migration and colony formation abilities for A549 and HepG2 cancer cells and activated the apoptotic pathway. In addition, it initiated another backup deadly pathway, necro-apoptosis, through the activation of the RIPK1/RIPK3/MLKL pathway.


Assuntos
DNA Topoisomerases Tipo I , Neoplasias , Apoptose , Ciprofloxacina/farmacologia , DNA Topoisomerases Tipo I/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Simulação de Acoplamento Molecular , Proteínas Quinases/metabolismo
6.
Curr Issues Mol Biol ; 44(7): 2967-2981, 2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35877429

RESUMO

Inflammation is a critical defensive mechanism mainly arising due to the production of prostaglandins via cyclooxygenase enzymes. This study aimed to examine the anti-inflammatory activity of fatty acid glucoside (FAG), which is isolated from Ficus benghalensis against lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. The cytotoxic activity of the FAG on RAW 264.7 macrophages was evaluated with an MTT assay. The levels of PGE2 and NO and the activity of iNOS, COX-1, and COX-2 enzymes in LPS-stimulated RAW 264.7 cells were evaluated. The gene expression of IL-6, TNF-α, and PGE2 was investigated by qRT-PCR. The expression of epidermal growth factor receptor (EGFR), Akt, and PI3K proteins was examined using Western blotting analysis. Furthermore, molecular docking of the new FAG against EGFR was investigated. A non-cytotoxic concentration of FAG increased NO release and iNOS activity, inhibited COX-1 and COX-2 activities, and reduced PGE2 levels in LPS-stimulated RAW 264.7 cells. It diminished the expression of TNF-α, IL-6, PGE2, EGFR, Akt, and PI3K. Furthermore, the molecular docking study proposed the potential direct binding of FAG with EGFR with a high affinity. This study showed that FAG is a natural EGFR inhibitor, NO-releasing, and COX-inhibiting anti-inflammatory agent via EGFR/Akt/PI3K pathway inhibition.

7.
J Inflamm Res ; 15: 205-215, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35046695

RESUMO

OBJECTIVE: To study the limit time of phlebitis caused by continuous infusion of KabivenTM Pl and TNA (KabivenTM Pl+ alanyl glutamine + potassium aspartate) through a peripheral vein, and to provide a reference for clinical formulation of preventive measures for phlebitis. METHODS: White rabbits (n = 72) were randomly divided into three groups: group A (Normal saline), group B (Kabiven™ Pl), and group C (TNA). Blood was collected from the ear margin vein before administration and after three hours, four hours, five hours, and six hours of administration. CRP and TNF-ɑ were measured by enzyme-linked immunosorbent assay. Hematoxylin and eosin staining and immunohistochemical staining were performed on tissue samples taken from the insertion point of the indwelling needle, the tip of the indwelling needle, and 1 cm from the tip of the indwelling needle, closer to the heart, to analyze early pathological changes in blood vessels. RESULTS: (1) There were no visible inflammatory symptoms in groups A, B, or C within 6 hours. (2) Four hours after starting intravenous administration, the levels of inflammatory markers in groups B and C were higher than in group A, and (3) the degree of inflammatory cell infiltration in groups B and C was more severe than in group A. (4) In all groups, the inflammatory reaction at the tip of the indwelling needle was more severe than at the other two sites. CONCLUSION: When the emulsions TNA and Kabiven™ Pl are infused through a peripheral vein, (1) four hours may be considered as the maximum time for continuous intravenous infusion in the same vein before inflammatory changes become evident, and (2) systematic assessment of the tip of the indwelling needle should be considered for inclusion in the nursing plan for phlebitis monitorings.

8.
Molecules ; 26(24)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34946711

RESUMO

Insulin resistance contributes to several disorders including type 2 diabetes and cardiovascular diseases. Carpachromene is a natural active compound that inhibits α-glucosidase enzyme. The aim of the present study is to investigate the potential activity of carpachromene on glucose consumption, metabolism and insulin signalling in a HepG2 cells insulin resistant model. A HepG2 insulin resistant cell model (HepG2/IRM) was established. Cell viability assay of HepG2/IRM cells was performed after carpachromene/metformin treatment. Glucose concentration and glycogen content were determined. Western blot analysis of insulin receptor, IRS1, IRS2, PI3k, Akt, GSK3, FoxO1 proteins after carpachromene treatment was performed. Phosphoenolpyruvate carboxykinase (PEPCK) and hexokinase (HK) enzymes activity was also estimated. Viability of HepG2/IRM cells was over 90% after carpachromene treatment at concentrations 6.3, 10, and 20 µg/mL. Treatment of HepG2/IRM cells with carpachromene decreased glucose concentration in a concentration- and time-dependant manner. In addition, carpachromene increased glycogen content of HepG2/IRM cells. Moreover, carpachromene treatment of HepG2/IRM cells significantly increased the expression of phosphorylated/total ratios of IR, IRS1, PI3K, Akt, GSK3, and FoxO1 proteins. Furthermore, PEPCK enzyme activity was significantly decreased, and HK enzyme activity was significantly increased after carpachromene treatment. The present study examined, for the first time, the potential antidiabetic activity of carpachromene on a biochemical and molecular basis. It increased the expression ratio of insulin receptor and IRS1 which further phosphorylated/activated PI3K/Akt pathway and phosphorylated/inhibited GSK3 and FoxO1 proteins. Our findings revealed that carpachromene showed central molecular regulation of glucose metabolism and insulin signalling via IR/IRS1/ PI3K/Akt/GSK3/FoxO1 pathway.


Assuntos
Benzopiranos/farmacologia , Proteína Forkhead Box O1/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Hep G2 , Humanos
9.
Anticancer Res ; 41(5): 2383-2395, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33952463

RESUMO

BACKGROUND/AIM: This study aimed to investigate the effect of the new ciprofloxacin chalcone [7-(4-(N-substituted carbamoyl methyl) piperazin-1 yl)] on the proliferation, migration, and metastasis of MCF-7 and MDA-MB-231 breast cancer cell lines. MATERIALS AND METHODS: Cell viability, colony formation and cell migration abilities were analysed. Cell cycle distribution and apoptosis were examined by flow cytometry. The molecular mechanism underlying chalcone's activity was investigated using qRT-PCR and western blotting. RESULTS: This new ciprofloxacin chalcone significantly inhibited proliferation, colony formation, and cell migration abilities of both cancer cell lines. Furthermore, it initiated apoptosis and caused cell cycle arrest at G2/M and S phase in MCF-7 and MDA-MB-231 cell lines, respectively. In addition, it up-regulated the expression of pro-apoptotic factors, p53, PUMA and NOXA, and down-regulated the expression of anti-apoptotic factors, MDM2 and MDM4. At the same time, it inhibited epithelial-mesenchymal transition by increasing the expression of E-cadherin and decreasing the expression of TGF-ß1, SNAI1, TWIST1, MMP2, and MMP9. CONCLUSION: This new ciprofloxacin chalcone exhibited promising apoptotic and anti-metastatic activities against MCF-7 and MDA-MB-231 breast cancer cell lines, and, therefore, is an attractive molecule for drug development in the treatment of breast cancer.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Chalcona/farmacologia , Ciprofloxacina/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Proteínas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Apoptose/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Caderinas/genética , Caderinas/metabolismo , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Chalcona/química , Ciprofloxacina/química , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Estrutura Molecular , Proteínas/genética , Transdução de Sinais/genética , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismo
10.
Cell Death Discov ; 6: 83, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32963811

RESUMO

Gold nanoparticles (Au-NPs) have attracted attention as a promising sensitizer owing to their high atomic number (Z), and because they are considered fully multifunctional, they are preferred over other metal nanoparticles. Cold atmospheric plasma (CAP) has also recently gained attention, especially for cancer treatment, by inducing apoptosis through the formation of reactive oxygen species (ROS). In this study, the activity of different sized Au-NPs with helium-based CAP (He-CAP) was analyzed, and the underlying mechanism was investigated. Treating cells with only small Au-NPs (2 nm) significantly enhanced He-CAP-induced apoptosis. In comparison, 40 nm and 100 nm Au-NPs failed to enhance cell death. Mechanistically, the synergistic enhancement was due to 2 nm Au-NPs-induced decrease in intracellular glutathione, which led to the generation of intracellular ROS. He-CAP markedly induced ROS generation in an aqueous medium; however, treatment with He-CAP alone did not induce intracellular ROS formation. In contrast, the combined treatment significantly enhanced the intracellular formation of superoxide (O2• -) and hydroxyl radical (•OH). These findings indicate the potential therapeutic use of Au-NPs in combination with CAP and further clarify the role of Au-NPs in He-CAP-aided therapies.

11.
Anticancer Res ; 40(9): 5025-5033, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32878790

RESUMO

BACKGROUND/AIM: This study aimed to investigate the effect of a new 7-(4-(N-substituted carbamoylmethyl) piperazin-1-yl) ciprofloxacin-derivative on the proliferation and migration abilities of HeLa cells. MATERIALS AND METHODS: Cell viability and morphological alterations were examined. Changes in migration were detected using wound healing and colony formation assays. Flow cytometry and western blotting were used to investigate the molecular mechanisms underlying this ciprofloxacin-derivative's action in HeLa cells. RESULTS: The examined ciprofloxacin-derivative reduced viability of HeLa cells in a concentration-dependent manner and altered cellular morphology, indicating cell death. Furthermore, it significantly inhibited wound closure, even in a non-cytotoxic concentration, and reduced HeLa cell colony formation. In addition, apoptosis was increased probably through significant up-regulation of Bax protein expression and the generation of active cleaved caspase-3 protein. CONCLUSION: Our new derivative inhibits proliferation and induces apoptosis of HeLa cells. Furthermore, it suppressed the migration and colony formation abilities of HeLa cells. Therefore, it represents an attractive agent for drug development against cervical cancer based on its anti-metastatic effect.


Assuntos
Antineoplásicos/farmacologia , Ciprofloxacina/análogos & derivados , Ciprofloxacina/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ciprofloxacina/química , Relação Dose-Resposta a Droga , Células HeLa , Humanos , Estrutura Molecular , Ensaio Tumoral de Célula-Tronco
12.
Cancer Lett ; 451: 58-67, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30867139

RESUMO

The repurposing of existing FDA-approved non-cancer drugs is a potential source of new treatment options for cancer patients. An anti-inflammatory drug, 5-aminosalicylic acid (5-ASA), has been clinically used to treat inflammatory bowel disease. Hyperthermia (HT) is widely applicable addendum therapy with the existing cancer treatment modalities. Here, we addressed how 5-ASA combined with HT induces lethal effects in human oral squamous cell carcinoma (OSCC) HSC-3 cells. We found that 5-ASA/HT combination significantly inhibited the viability of HSC-3 cells, while cytotoxic effects in primary human dermal fibroblast cells were minor. Apoptotic endpoints were significantly increased by the 5-ASA/HT combined treatment, as evidenced by presence of Annexin V-FITC/PI positive cells, loss of MMP, Bcl-2/Bax ratio alteration, and increased Fas, cleaved Bid, and caspase expression. Interestingly, the enhancement of apoptosis was reversed in the presence of ON/ONOO- scavengers. These findings indicate that the combination treatment enhances apoptosis via ON/ONOO- mediated ER stress-Ca2+-mitochondria signaling and caspase-dependent apoptotic pathways. Our findings provide novel evidence that the combination of 5-ASA and HT is a promising approach for the enhancement of apoptosis; it may serve as an effective strategy for treating human OSCC.


Assuntos
Apoptose , Febre/patologia , Mesalamina/farmacologia , Óxido Nítrico/metabolismo , Ácido Peroxinitroso/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Terapia Combinada , Humanos , Neoplasias Bucais/patologia
13.
Free Radic Biol Med ; 135: 79-86, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30807827

RESUMO

Cells are equipped with various antioxidant defense factors to antagonize insults from reactive oxygen species (ROS), thus the antioxidant capacity has been characterized by a variety of cellular responses during the pathophysiological processes. Amniotic cells have been extensively applied in clinical practice for burn treatment, corneal repair, and tissue regeneration. However, the antioxidative properties of amniotic cells have not yet been fully understood. Therefore, the current study was aimed to observe the response of amniotic cells against ROS stimuli, and to investigate the underlying molecular mechanisms. The immortalized human amniotic mesenchymal cells (iHAMs) and immortalized human amniotic epithelial cells (iHAEs) were used. The human skin fibroblast (HSF) was used as a control cell line. Changes in intracellular ROS generation, cell viability, and cellular morphology were investigated to reveal the response of amniotic cells against oxidative stresses induced by x-rays and hydrogen peroxide. In addition, expression of apoptosis-related proteins and response to antioxidative stress was also examined. The intracellular ROS level and cell apoptosis in iHAMs was remarkably increased. iHAEs showed relatively high resistance to ROS stimulation, which can be attributed to the high SOD2 expression and up-regulation of Nrf2, HO-1 after x-rays exposure. In contrast, iHAMs were found sensitive to oxidative damage. Expression of caspase-3, caspase-8 and BAX was increased, whereas down-regulation of Bcl-xL, Nrf2, HO-1, and TrxR-1. Taken together, findings have highlighted the characterization of response of amniotic derived epithelial and mesenchymal cells to oxidative stress. In physiological processes, iHAMs may play an important role to maintain the homeostasis of the pregnancy environment. However, under oxidative stimulations, iHAEs provides protection against oxidative damage in amnion tissue.


Assuntos
Âmnio/transplante , Células Epiteliais/transplante , Mesoderma/transplante , Estresse Oxidativo/genética , Âmnio/citologia , Âmnio/metabolismo , Antioxidantes/metabolismo , Apoptose/genética , Apoptose/efeitos da radiação , Caspase 3/genética , Caspase 8/genética , Linhagem Celular , Sobrevivência Celular/genética , Sobrevivência Celular/efeitos da radiação , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Fibroblastos/transplante , Heme Oxigenase-1/genética , Humanos , Peróxido de Hidrogênio/metabolismo , Mesoderma/citologia , Mesoderma/metabolismo , Fator 2 Relacionado a NF-E2/genética , Oxirredução , Estresse Oxidativo/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação , Superóxido Dismutase/genética , Raios X/efeitos adversos
14.
Free Radic Res ; 53(3): 304-312, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30668194

RESUMO

Antioxidant activity has been reported for some atypical antipsychotic drugs; however, the detailed mechanism is not well known. Here, we investigated the effects of atypical antipsychotic drugs on •OH radical formation, intracellular reactive oxygen species (ROS), and apoptosis induced by ionising radiation. The reaction rate constants with •OH radicals were determined for five antipsychotic drugs as follows, in descending order: olanzapine, aripiprazole, clozapine, haloperidol, and risperidone. Experiments with aminophenyl fluorescein, a fluorescent dye, showed that olanzapine and clozapine could scavenge intracellular ROS. However, experiments with hydroxyphenyl fluorescein showed that only olanzapine inhibited ROS generation. X-irradiation-induced apoptosis in human lymphoma U937 cells was inhibited by clozapine at relatively low concentrations and by olanzapine at higher concentrations. Clozapine inhibited caspase-8 and caspase-3 activation and prevented loss of mitochondrial membrane potential. In contrast, olanzapine inhibited X-irradiation-induced p-JNK activation. Although the atypical antipsychotic drugs used here have relatively high reaction rate constants with •OH radicals in aqueous solutions, inhibition of intracellular ROS was not due to •OH radical scavenging. In addition, suppression of X-irradiation-induced apoptosis was not directly linked with intracellular ROS scavenging. When apoptosis signalling pathways were studied, clozapine-mediated inhibition of apoptosis was dependent on caspase-3 and caspase-8. In contrast, olanzapine inhibited apoptosis via down regulation of X-irradiation-induced p-JNK. These results suggested that both olanzapine and clozapine have antioxidative and antiapoptotic activities via distinct pathways, and provide useful information for better understanding of drug characteristics.


Assuntos
Antipsicóticos/uso terapêutico , Radical Hidroxila/metabolismo , Linfoma/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Antipsicóticos/farmacologia , Apoptose , Humanos , Linfoma/patologia , Células U937
15.
Mikrochim Acta ; 186(1): 22, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30554280

RESUMO

A star-shaped molecularly imprinted coating was prepared starting from octavinyl-modified polyhedral oligomeric silsesquioxanes (Ov-POSS). It possesses a relatively open structure and has good site accessibility and a larger capacity even at lower cross-linking. The imprinted coating was prepared from S-amlodipine (S-AML) as the template and analyte, Ov-POSS as the cross-linker, and methacrylic acid as the functional monomer. The preparation and chromatographic parameters were optimized, including ratio of template to functional monomer, apparent cross-linking degree, pH value, ACN content and salt concentration in the mobile phase. The best resolution in enantiomer separation by means of capillary electrochromatography reaches a value of 33. A good recognition ability (α = 2.60) was obtained and the column efficiency for S-AML was 54,000 plates m-1. The use of Ov-POSS as a cross-linker significantly improves the column capacity and thus the detection sensitivity. The results show that Ov-POSS is an effective cross-linker for the preparation of imprinted polymers with good accessibility and large capacity. Graphical abstract Schematic presentation of the preparation of star-shaped imprinted polymer using octavinyl-modified polyhedral oligomeric silsesquioxanes (Ov-POSS) and by using methacrylic acid (MAA) as functional monomer. The best enantiometric resolution (33) for amlodipine (AML) can be achieved in capillary chromatography (CEC).

16.
Free Radic Biol Med ; 129: 537-547, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30355525

RESUMO

Sulfasalazine (SSZ) is a well-known anti-inflammatory drug and also an inhibitor of the cystine-glutamate antiporter that is known to reduce intracellular glutathione (GSH) level and increase cellular oxidative stress, indicating its anti-tumor potential. However, the combination of SSZ with other physical modalities remains unexplored. Here, the effects of SSZ on cold atmospheric helium plasma (He-CAP), which produces approximately 24 x higher concentration of hydroxyl radicals (. OH) compared to X-irradiation (IR) in aqueous solution, and on IR-induced apoptosis in human leukemia Molt-4 cells were studied to elucidate the mechanism of apoptosis enhancement. Both the Annexin V-FITC/PI and DNA fragmentation assay revealed that pre-treatment of cells with SSZ significantly enhanced He-CAP and IR-induced apoptosis. Similar enhancement was observed during the loss of mitochondrial membrane potential, intracellular Ca2+ ions, and mitochondria- and endoplasmic reticulum-related proteins. The concentration of intracellular reactive oxygen species (ROS) was much higher in He-CAP treated cells than in X-irradiated cells. On the other hand, strong enhancement of Fas expression and caspase-8 and -3 activities were only observed in X-irradiated cells. It might be possible that the higher concentration of intracellular and extracellular ROS suppressed caspase activities and Fas expression in He-CAP-treated cells. Notably, pretreating the cells with an antioxidant N-acetyl-L-cysteine (NAC) dramatically decreased apoptosis in cells treated by He-CAP, but not by IR. These results suggest that IR-induced apoptosis is due to specific and effective ROS distribution since intracellular ROS formation is marginal and the high production of ROS inside and outside of cells plays unique roles in He-CAP induced apoptosis. We conclude that our data provides efficacy and mechanistic insights for SSZ, which might be helpful for establishing SSZ as a future sensitizer in He-CAP or IR therapy for cancer.


Assuntos
Radical Hidroxila/metabolismo , Oxidantes/farmacologia , Gases em Plasma/farmacologia , Sulfassalazina/farmacologia , Linfócitos T/metabolismo , Acetilcisteína/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Cálcio/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Caspase 8/genética , Caspase 8/metabolismo , Cátions Bivalentes , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Fragmentação do DNA/efeitos dos fármacos , Fragmentação do DNA/efeitos da radiação , Regulação da Expressão Gênica , Células HCT116 , Hélio/química , Humanos , Radical Hidroxila/agonistas , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos da radiação , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Estresse Oxidativo , Transdução de Sinais , Sulfassalazina/antagonistas & inibidores , Linfócitos T/efeitos dos fármacos , Linfócitos T/patologia , Linfócitos T/efeitos da radiação , Raios X , Receptor fas/genética , Receptor fas/metabolismo
17.
Sci Rep ; 7(1): 11659, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28916738

RESUMO

Cold atmospheric plasmas (CAPs) have been proposed as a novel therapeutic method for its anti-cancer potential. However, its biological effects in combination with other physical modalities remain elusive. Therefore, this study examined the effects of cold atmospheric helium plasma (He-CAP) in combination with hyperthermia (HT) 42 °C or radiation 5 Gy. Synergistic enhancement in the cell death with HT and an additive enhancement with radiation were observed following He-CAP treatment. The synergistic effects were accompanied by increased intracellular reactive oxygen species (ROS) production. Hydrogen peroxide (H2O2) and superoxide (O2•-) generation was increased immediately after He-CAP treatment, but fails to initiate cell death process. Interestingly, at late hour's He-CAP-induced O2•- generation subsides, however the combined treatment showed sustained increased intracellular O2•- level, and enhanced cell death than either treatment alone. He-CAP caused marked induction of ROS in the aqueous medium, but He-CAP-induced ROS seems insufficient or not completely incorporated intra-cellularly to activate cell death machinery. The observed synergistic effects were due to the HT effects on membrane fluidity which facilitate the incorporation of He-CAP-induced ROS into the cells, thus results in the enhanced cancer cell death following combined treatment. These findings would be helpful when establishing a therapeutic strategy for CAP in combination with HT or radiation.


Assuntos
Antineoplásicos/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/efeitos da radiação , Hélio/farmacologia , Linfócitos/efeitos dos fármacos , Linfócitos/efeitos da radiação , Gases em Plasma/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Células Epiteliais/química , Células Epiteliais/fisiologia , Temperatura Alta , Humanos , Linfócitos/química , Linfócitos/fisiologia , Radiação , Espécies Reativas de Oxigênio/análise
18.
PLoS One ; 12(8): e0183712, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28832644

RESUMO

3-O-trans-p-coumaroyl-alphitolic acid (3OTPCA), a triterpenoid isolated from the plant Zizyphus jujuba (ZJ), is known to be cytotoxic to cancer cells; however, the molecular mechanism underlying 3OTPCA-induced cell death remains unknown. Here, we provide novel evidence that 3OTPCA induces apoptotic cell death in human leukemia cells. We found that 3OPTCA induces DNA fragmentation within 24 h after treatment in U937 cells, which was also observed in other leukemia cell lines, including Molt-4 and Jurkat cells. We then investigated other parameters involved in apoptosis, including phosphatidylserine externalization and caspase-3 cleavage in U937 cells treated with 3OTPCA. 3OTPCA caused significant DNA fragmentation, annexin-V binding, and caspase-3 cleavage, indicating that 3OTPCA exerts cytotoxicity through apoptosis induction. RNA-seq analysis revealed that the expression of transcripts associated with the unfolded protein response (UPR), such as spliced XBP-1 and CHOP, were up-regulated by 3OTPCA treatment. 3OTPCA-induced UPR activation may be due to endoplasmic reticulum (ER) stress because both 3OTPCA and thapsigargin, an endoplasmic Ca2+ transport ATPase inhibitor, increased intracellular calcium levels. 3OTPCA down-regulated the expression of Bcl-2, a target of CHOP, and led to the loss of the mitochondrial membrane, indicating that the intrinsic (mitochondrial) apoptotic pathway was triggered by 3OTPCA, likely through UPR activation. Furthermore, we found that 3OTPCA induced superoxide anion generation and, following p38 MAPK phosphorylation, caspase-8 cleavage without affecting Fas expression. It also induced subsequent Bid cleavage, which may enhance the apoptosis triggered by the intrinsic pathway. These findings reveal for the first time that 3OTPCA induces apoptotic cell death through the generation of reactive oxygen species and activation of UPR.


Assuntos
Apoptose/efeitos dos fármacos , Leucemia de Células T/patologia , Espécies Reativas de Oxigênio/metabolismo , Triterpenos/farmacologia , Resposta a Proteínas não Dobradas , Ziziphus/química , Biomarcadores/metabolismo , Cálcio/metabolismo , Ativação Enzimática , Humanos , Células Jurkat , Leucemia de Células T/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
19.
Oncol Lett ; 14(1): 1035-1040, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28693270

RESUMO

Bufadienolides are constituents of the traditional Chinese medicine Chan Su and are found in toad venom. Cardiovascular side-effects are one of the limiting factors towards developing bufadienolides as chemotherapeutic agents. Thus, in the present study, low doses of bufalin and cinobufotalin, prominent members of the bufadienolides, were investigated for their cytotoxic activity in combination with hyperthermia (HT) or radiation (Rad) therapy. In addition, the underlying mechanism involved was investigated. A DNA fragmentation assay, viability assay and microscopic observation were primarily used to assess the effect of low doses of the two drugs in human lymphoma U937 cells. Furthermore, the effects of these drugs on the mitochondrial membrane potential (MMP) and apoptotic-associated protein activation were investigated. HT/bufadienolide- and RT/bufadienolide-treated samples significantly increased the DNA fragmentation percentile and decreased the MMP, as well as increasing the apoptotic features observed microscopically within a relatively short time (6 h) after treatment. The two combinations affected the expression of important apoptotic markers, including caspase-3 and BH3 interacting domain death agonist. The findings of the current study confirm the additive effect of HT with this group of drugs, directing a novel therapeutic avenue for the clinical use of bufadienolides at lower doses with more restrained cardio toxic side-effects.

20.
Apoptosis ; 22(10): 1225-1234, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28733865

RESUMO

Hyperthermia induced by heat stress (HS) is known to inhibit proliferation and induce cell death in cancer. We previously demonstrated that checkpoint kinase 1 (Chk1) contributes to G2/M arrest and cell survival under HS; however, the role of Chk2, a functional analog of Chk1, in regulation of the cell cycle and cell death under HS is still unknown. Here, we addressed the role of Chk2 using Molt-4 cells with p53-targeted shRNA (Molt-4/shp53) and parental control cells (Molt-4/V). Chk2 inhibition suppressed C-terminal acetylation of p53 and delayed the induction of p53-target genes in Molt-4/V cells under HS; however, Chk2 inhibition failed to inhibit apoptosis induced by HS, indicating that Chk2 was dispensable for p53-dependent apoptosis under HS. In contrast, Chk2 inhibition abrogated G2/M arrest and promoted cell death induced by HS in HeLa cells and Molt-4/shp53 cells. Thus, we demonstrated for the first time that Chk2 was required for cell cycle arrest and cell survival, particularly in cells with p53 defects under HS. These findings indicated that Chk2 may be a selective target for p53-mutated or -deficient cancer treated with hyperthermia.


Assuntos
Pontos de Checagem do Ciclo Celular/genética , Quinase do Ponto de Checagem 2/fisiologia , Temperatura Alta , Estresse Fisiológico/genética , Proteína Supressora de Tumor p53/metabolismo , Apoptose/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Quinase do Ponto de Checagem 2/antagonistas & inibidores , Quinase do Ponto de Checagem 2/genética , Dano ao DNA , Citometria de Fluxo , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Mutação , Reação em Cadeia da Polimerase em Tempo Real , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA