Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 15(9)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39337756

RESUMO

In this study, based on the principle of grating interferometer-based acoustic sensors, design guidelines for the grating interferometric module were obtained and analyzed considering various factors in order to obtain high sensitivity, and a glass-based grating interference component and its acoustic sensor device were developed. The key parameters of the grating interference structure were extracted, and their effects on the acoustic response sensitivity were quantified for multiple mechanisms. For the development of the acoustic sensor, the grating-on-convex-platform structure and the micromachining processes of the glass-based components were designed and developed. The developed acoustic sensor samples achieved high sensitivity. In particular, the sample suitable for low-frequency application obtained a sensitivity of 0.776 V/Pa @ 1 kHz, and the spectrum of its sensitivity was flat from 50 Hz to 8 Hz with a deviation less than 1.5 dB and a sensitivity of 0.408 V/Pa @ 20 Hz.

2.
Bioinspir Biomim ; 19(5)2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39116911

RESUMO

Micro-sensors, such as pressure and flow sensors, are usually adopted to attain actual fluid information around swimming biomimetic robotic fish for hydrodynamic analysis and control. However, most of the reported micro-sensors are mounted discretely on body surfaces of robotic fish and it is impossible to analyzed the hydrodynamics between the caudal fin and the fluid. In this work, a biomimetic caudal fin integrated with a resistive pressure sensor is designed and fabricated by laser machined conductive carbon fibre composites. To analyze the pressure exerted on the caudal fin during underwater oscillation, the pressure on the caudal fin is measured under different oscillating frequencies and angles. Then a model developed from Bernoulli equation indicates that the maximum pressure difference is linear to the quadratic power of the oscillating frequency and the maximum oscillating angle. The fluid disturbance generated by caudal fin oscillating increases with an increase of oscillating frequency, resulting in the decrease of the efficiency of converting the kinetic energy of the caudal fin oscillation into the pressure difference on both sides of the caudal fin. However, perhaps due to the longer stability time of the disturbed fluid, this conversion efficiency increases with the increase of the maximum oscillating angle. Additionally, the pressure variation of the caudal fin oscillating with continuous different oscillating angles is also demonstrated to be detected effectively. It is suggested that the caudal fin integrated with the pressure sensor could be used for sensing thein situflow field in real time and analyzing the hydrodynamics of biomimetic robotic fish.


Assuntos
Nadadeiras de Animais , Biomimética , Desenho de Equipamento , Peixes , Robótica , Natação , Animais , Robótica/instrumentação , Nadadeiras de Animais/fisiologia , Biomimética/instrumentação , Biomimética/métodos , Peixes/fisiologia , Natação/fisiologia , Hidrodinâmica , Análise de Falha de Equipamento , Transdutores de Pressão , Pressão , Materiais Biomiméticos , Transdutores
3.
Nanomicro Lett ; 16(1): 173, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619642

RESUMO

With the diversified development of big data, detection and precision guidance technologies, electromagnetic (EM) functional materials and devices serving multiple spectrums have become a hot topic. Exploring the multispectral response of materials is a challenging and meaningful scientific question. In this study, MXene/TiO2 hybrids with tunable conduction loss and polarization relaxation are fabricated by in situ atomic reconstruction engineering. More importantly, MXene/TiO2 hybrids exhibit adjustable spectral responses in the GHz, infrared and visible spectrums, and several EM devices are constructed based on this. An antenna array provides excellent EM energy harvesting in multiple microwave bands, with |S11| up to - 63.2 dB, and can be tuned by the degree of bending. An ultra-wideband bandpass filter realizes a passband of about 5.4 GHz and effectively suppresses the transmission of EM signals in the stopband. An infrared stealth device has an emissivity of less than 0.2 in the infrared spectrum at wavelengths of 6-14 µm. This work can provide new inspiration for the design and development of multifunctional, multi-spectrum EM devices.

4.
Mater Horiz ; 11(5): 1305-1314, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38169374

RESUMO

Elastomers are widely used in traditional industries and new intelligent fields. However, they are inevitably damaged by electricity, heat, force, etc. during the working process. With the continuous improvement of reliability and environmental protection requirements in human production and living, it is vital to develop elastomer materials with good mechanical properties that are not easily damaged and can self-heal after being damaged. Nevertheless, there are often contradictions between mechanical properties and self-healing as well as toughness, strength, and ductility. Herein, a strong and dynamic decuple hydrogen bonding based on carbon hydrazide (CHZ) is reported, accompanied with soft polydimethylsiloxane (PDMS) chains to prepare self-healing (efficiency 98.7%), recyclable, and robust elastomers (CHZ-PDMS). The strategy of decuple hydrogen bonding will significantly impact the study of the mechanical properties of elastomers. High stretchability (1731%) and a high toughness of 23.31 MJ m-3 are achieved due to the phase-separated structure and energy dissipation. The recyclability of CHZ-PDMS further supports the concept of environmental protection. The application of CHZ-PDMS as a flexible strain sensor exhibited high sensitivity.

5.
Adv Mater ; 36(7): e2307804, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37844305

RESUMO

To match the increasing miniaturization and integration of electronic devices, higher requirements are put on the dielectric and thermal properties of the dielectrics to overcome the problems of delayed signal transmission and heat accumulation. Here, a 3D  porous thermal conductivity network is successfully constructed inside the polyimide (PI) matrix by the combination of ionic liquids (IL) and calcium fluoride (CaF2 ) nanofillers, motivated by the bubble-hole forming orientation force. Benefiting from the 3D thermal network formed by IL as a porogenic template and "crystal-like phase" structures induced by CaF2 - polyamide acid charge transfer, IL-10 vol% CaF2 /PI porous film exhibits a low permittivity of 2.14 and a thermal conductivity of 7.22 W m-1 K-1 . This design strategy breaks the bottleneck that low permittivity and high thermal conductivity in microelectronic systems are difficult to be jointly controlled, and provides a feasible solution for the development of intelligent microelectronics.

6.
Biomimetics (Basel) ; 8(2)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37366822

RESUMO

The present study focuses on summarizing the recent advancements in the field of fish swimming mode research and bionic robotic fish prototypes based on smart materials. It has been widely acknowledged that fish exhibit exceptional swimming efficiency and manoeuvrability compared to conventional underwater vehicles. In the pursuit of developing autonomous underwater vehicles (AUVs), conventional experimental methods often prove to be complex and expensive. Hence, the utilization of computer simulations for hydrodynamic modelling provides a cost-effective and efficient approach for analysing the swimming behaviour of bionic robotic fish. Additionally, computer simulations can provide data that are difficult to obtain through experimental methods. Smart materials, which integrate perception, drive, and control functions, are increasingly being applied to bionic robotic fish research. However, the utilization of smart materials in this field is still an area of ongoing research and several challenges remain unresolved. This study provides an overview of the current state of research on fish swimming modes and the development of hydrodynamic modelling. The application of four distinct types of smart materials in bionic robotic fish is then reviewed, with a focus on analysing the advantages and disadvantages of each material in driving swimming behaviour. In conclusion, the paper highlights the key technical challenges that must be addressed for the practical implementation of bionic robotic fish and provides insights into the potential future directions of this field.

7.
Adv Mater ; 35(2): e2207451, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36281805

RESUMO

Dielectric polyimides (PIs) are ubiquitous as insulation in electrical power systems and electronic devices. Generally, dynamic polyimide is required to solve irreversible failure processes of electrical or mechanical damage, for example, under high temperature, pressure, and field strength. The challenge lies in the design of the molecular structure of rigid polyimide to achieve dynamic reversibility. Herein, a low-molecular-weight polyimide gene unit is designed to crosslink with polyimide ligase to prepare the smart film. Interestingly, due to the variability of gene unit and ligase combinations, the polyimide films combining hardness with softness are designed into three forms via a "Mimosa-like" bionic strategy to adapt to different application scenarios. Meanwhile, the films have good degradation efficiency, excellent recyclability, and can be self-healable, which makes them reuse. Clearly, the films can be used in the preparation of ultrafast sensors with a response time ≈0.15 s and the application of corona-resistant films with 100% recovery. Furthermore, the construction of polyimide and carbon-fiber-reinforced composites (CFRCs) has been verified to apply to the worse environment. Nicely, the composites have the property of multiple cycles and the non-destructive recycle rate of carbon fiber (CF) is as high as 100%. The design idea of preparing high-strength dynamic polyimide by crosslinking simple polyimide gene unit with ligase could provide a good foundation and a clear case for the sustainable development of electrical and electronic polyimides, from the perspective of Mimosa bionics.


Assuntos
Biônica , Mimosa , Dureza , Eletrônica , Eletricidade
8.
Front Neurorobot ; 16: 789842, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370593

RESUMO

Aiming at the situation that the structural parameters of the general manipulators are uncertain, a time-varying impedance controller based on model reference adaptive control (MRAC) is proposed in this article. The proposed controller does not need to use acceleration-based feedback or to measure external loads and can tolerate considerable structure parameter errors. The global uniform asymptotic stability of the time-varying closed-loop system is analyzed, and a selection approach for control parameters is presented. It is demonstrated that, by using the proposed control parameter selection approach, the closed-loop system under the adaptive controller is equivalent to an existing result. The feasibility of the presented controller for the general manipulators is demonstrated by some numerical simulations.

9.
Nanoscale ; 13(24): 10798-10806, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34106110

RESUMO

Highly conductive, conformable and gel-free electrodes are desirable in human electrophysiology. Besides, intimately coupling with human skin, wearable strain sensors can detect numerous physiological signals, such as wrist pulse and breath. In this study, a multilayer graphene nanosheet film (MGNF) with high conductivity was prepared by the Marangoni self-assembly for using in tattoo dry electrodes (TDEs) and in a graphene tattoo strain sensor (GTSS). Compared to commercial Ag/AgCl gel electrodes, TDEs have lower skin-electrode contact impedance and could detect human electrocardiogram for 24-hour wearing more accurately as well as electromyogram. Through designing a slim serpentine ribbon structure, a resistance-type GTSS, without deterioration even after 2000 cycles, is well demonstrated for human wrist pulse and breath sensing. With the advantages of high conductivity and conformability, MGNF provides support to fabricate low-cost, customizable, and high-performance electronic tattoos for human electrophysiology and strain sensing.


Assuntos
Grafite , Tatuagem , Dispositivos Eletrônicos Vestíveis , Eletrônica , Eletrofisiologia , Humanos
10.
ACS Appl Mater Interfaces ; 11(13): 12535-12543, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30869855

RESUMO

The utilization of electromagnetic (EM) energy neither is affected by the weather nor produces harmful substances. How to utilize and convert EM energy is of practical concern. Herein, delaminated titanium carbide (D-Ti3C2Tx) MXene nanosheet (NS) was successfully fabricated by the modified Gogotsi's method. The choice of atomic layer processing allows tailoring of layer distance of Ti3C2Tx so as to improve polarization. High-performance EM wave absorption of D-Ti3C2Tx MXene NS composites was obtained, and their comprehensive performance is the best of all Ti3C2Tx-based composites. Due to the competition between conduction loss and polarization loss, the higher the concentration of D-Ti3C2Tx in composites, the more the conversion of EM energy to thermal energy will be. Based on the mechanism, a prototype of thermoelectric generator is designed, which can convert the EM energy into power energy effectively. This thermoelectric generator will be the energy source for low power electric devices. Our finding will provide new ideas for the utilization of EM energy.

11.
Nanoscale ; 11(13): 6080-6088, 2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30869696

RESUMO

Environmentally friendly materials that exhibit high-performance electromagnetic interference (EMI) shielding are extremely necessary. Herein, we fabricated ultrathin Ti3C2Tx (U-Ti3C2Tx) MXene nanosheets (NS) by atomic-layer tailoring the layer thickness of Ti3C2Tx MXene. The U-Ti3C2Tx NS composites with highly efficient EMI shielding effectiveness can reduce secondary reflection, demonstrating its environmentally friendly performance. The U-Ti3C2Tx NS composite with 80 wt% loading exhibits an EMI shielding effectiveness of 58.1 dB at a thickness of 1 mm. Shielding performance analysis of different layer thicknesses shows that electron transport has an important contribution to the EMI shielding performance. Furthermore, the polarization induced by defects and terminal atoms plays an important role in the EMI shielding performance. Based on the electromagnetic (EM) wave response mechanism, a novel approach to effectively tune the EMI attenuation and shielding effectiveness can be achieved by adjusting the local conductive network. These findings will offer an effective strategy for designing environmentally friendly 2D materials with high-performance EMI shielding.

12.
RSC Adv ; 9(59): 34114-34119, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-35529984

RESUMO

Adiabatic temperature variation (ΔT), coefficient of performance (COP) and electrocaloric coefficient (ΔT/ΔE) play important roles in evaluating the comprehensive performance of solid-state cooling technology based on the electrocaloric effect (ECE). A Nb and Sn co-doped lead zirconate titanate antiferroelectric film, Pb0.99Nb0.02(Zr0.85Sn0.13Ti0.02)O3 (PNZST), shows a highly efficient and giant negative ECE. The ΔT, |ΔT/ΔE| and COP are about -9.8 K, 0.0488 K cm kV-1 and 35.53 at around 50 °C, respectively. The full width at half maximum of the ΔT peak is about 37 °C. Phenomenological analysis indicates that the highly efficient and giant negative ECE is associated with the first-order transition that has a discontinuous polarization change with increasing temperature.

13.
ACS Appl Mater Interfaces ; 9(29): 24696-24703, 2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28715192

RESUMO

A flexible semitransparent energy harvester is assembled based on laterally aligned Pb(Zr0.52Ti0.48)O3 (PZT) single-crystal nanowires (NWs). Such a harvester presents the highest open-circuit voltage and a stable area power density of up to 10 V and 0.27 µW/cm2, respectively. A high pressure sensitivity of 0.14 V/kPa is obtained in the dynamic pressure sensing, much larger than the values reported in other energy harvesters based on piezoelectric single-crystal NWs. Furthermore, theoretical and finite element analyses also confirm that the piezoelectric voltage constant g33 of PZT NWs is competitive to the lead-based bulk single crystals and ceramics, and the enhanced pressure sensitivity and power density are substantially linked to the flexible structure with laterally aligned PZT NWs. The energy harvester in this work holds great potential in flexible and transparent sensing and self-powered systems.

14.
Nanotechnology ; 28(4): 045710, 2017 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-28000621

RESUMO

Since manipulating electromagnetic waves with electromagnetic active materials for environmental and electric engineering is a significant task, here a novel prototype is reported by introducing reduced graphene oxide (RGO) interfaces in carbon fiber (CF) networks for a hierarchical carbon fiber/reduced graphene oxide/nickel (CF-RGO-Ni) composite textile. Upon charaterizations of the microscopic morphologies, electrical and magnetic properties, the presence of three-dimensional RGO interfaces and bifunctional nickel nanoparticles substantially influences the related physical properties in the resulting hierarchical composite textiles. Eletromagnetic interference (EMI) shielding performance suggests that the hierarchical composite textiles hold a strong shielding effectiveness greater than 61 dB, showing greater advantages than conventional polymeric and foamy shielding composites. As a polymer-free lightweight structure, flexible CF-RGO-Ni composites of all electromagnetic active components offer unique understanding of the multi-scale and multiple mechanisms in electromagnetic energy consumption. Such a novel prototype of shielding structures along with convenient technology highlight a strategy to achieve high-performance EMI shielding, coupled with a universal approach for preparing advanced lightweight composites with graphene interfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA