Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 39(51): 18935-18945, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38096809

RESUMO

The design of nanocomposites as a light-capturing system applied in photocatalytic water splitting is an emerging area of research. In our study, a simple in situ photodeposition method was proposed for the synthesis of CdS nanoflowers modified by nickel-based bifunctional, i.e., Ni/Ni(OH)2, cocatalysts. The introduction of cocatalysts has demonstrated a notable enhancement in the photocatalytic hydrogen evolution efficiency of CdS. The quantity of cocatalysts supported on CdS played an important role in governing the light absorption capability and photocatalytic efficacy. Ni-CdS-10 showed the best photocatalytic activity of 30.51 mmol g-1 h-1, which was 1.8 times and 2.6 times higher activity than Pt-CdS-1 wt % and pure CdS, respectively. Mechanism studies with UV-vis DRS, photoluminescence, and Mott-Schottky plots revealed the intrinsic electric field created at the p-n Ni(OH)2/CdS junctions, which can effectively implement the transport and separation of photoinduced carriers. From linear sweep voltammetry, electrochemical impedance spectroscopy, and DFT calculation, both Ni(OH)2 and Ni can effectively decrease the Gibbs free energies of hydrogen adsorption and reduce the overpotential of hydrogen evolution. As a result, the efficiency of generating H2 through photocatalysis experienced significant improvement, and the participation of bifunctional cocatalysts further reduced the photocorrosion of CdS, enhanced stability, improved low price, and efficient photocatalyst production.

2.
Nat Commun ; 14(1): 6553, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848423

RESUMO

Fluorescence analysis is a fast and sensitive method, and has great potential application in trace detection of environmental toxins. However, many important environmental toxins are non-fluorescent substances, and it is still a challenge to construct a fluorescence detection method for non-fluorescent substances. Here, by means of charge transfer effect and smart molecular imprinting technology, we report a sensitive indirect fluorescent sensing mechanism (IFSM) and microcystin (MC-RR) is selected as a model target. A molecular imprinted thin film is immobilized on the surface of zinc ferrite nanoparticles (ZnFe2O4 NPs) by using arginine, a dummy fragment of MC-RR. By implementation of IFSM on the paper-based microfluidic chip, a versatile platform for the quantitative assay of MC-RR is developed at trace level (the limit of detection of 0.43 µg/L and time of 20 min) in real water samples without any pretreatment. Importantly, the proposed IFSM can be easily modified and extended for the wide variety of species which lack direct interaction with the fluorescent substrate. This work offers the potential possibility to meet the requirements for the on-site analysis and may explore potential applications of molecularly imprinted fluorescent sensors.


Assuntos
Impressão Molecular , Nanopartículas , Impressão Molecular/métodos , Microcistinas/análise , Nanopartículas/química , Corantes Fluorescentes/química
3.
J Hazard Mater ; 460: 132440, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37660620

RESUMO

To ensure real-time validity of the detection of unstable toxic environmental pollutants, such as dissolved sulfides, we developed a portable on-site rapid analysis instrument. Through novel design of the color sensor chip-based core sensing components and the conversion between color signal and absorbance by Lambert's law, the instrument showed great performance for rapid (within 3 min) and sensitive on-site detection of sulfides in the environment. It is easy to achieve user-friendly, sample in-answer out, one-stop operation due to the touch-screen-integrated user interface of the instrument's data terminal. The detection limit of this method is 2.24 µg/L, the linear operation range is 0-1000 µg/L, and the coefficient of determination is 0.999. This instrument has been successfully applied to the on-site determination of sulfides in the Yellow River Delta and the Yantai Guangdang River in China. The portable instrument showed excellent anti-interference, good stability, and simple operation, which showed great prospects for the on-site rapid analysis of unstable targets in the environment.

4.
J Hazard Mater ; 460: 132508, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37690198

RESUMO

Chemical methods for preparing SERS substrates have the advantages of low cost and high productivity, but the strong background signals from the substrate greatly limit their applications in characterization and identification of organic compounds. Herein, we developed a one-step synthesis method to prepare silver nanoparticle substrates with ultralow SERS background using anionic ligands as stabilizing agents and applied the SERS substrate for the reliable and reproducible identification of typical organic pollutants and corresponding degradation intermediates. The synthesis method shows excellent universality to different reducing agents cooperating with different anionic ligands (Cl-, Br-, I-, SCN-). As model applications, the machine learning algorithm can realize the precise prediction of six organophosphorus pesticides and eight sulfonamide antibiotics with 100% accuracy based on SERS training data. More importantly, the ultralow-background SERS substrate enables one to detect and identify the time-dependent degradation intermediates of organophosphorus pesticides by combining them with density functional theory (DFT) calculations. All the results indicate that the ultralow-background SERS substrate will greatly push the development of SERS characterization applications.

5.
Talanta ; 257: 124358, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36821962

RESUMO

Making metal nanoparticle aggregates is a common way to improve surface-enhanced Raman scattering (SERS) enhancement via the formation of hot spots between nanoparticles. Here, we propose a "freeze-thaw-ultrasonication" method to obtain stable colloidal Ag nano-aggregates (AgNAs) with controllable sizes, which can remain stable for a few days. Compared with other method using aggregation reagents (e.g., organic molecules and salt), this method can maintain metal surface charges and adsorption affinity, which ensures the excellent SERS stability and sensitivity. The SERS detection window during the experiment can reach more than 25 min, which makes it a prerequisite for accurate SERS detection during a long-time range. Combining the obtained stable AgNAs with microfluidic devices, we established a sequential SERS on-line continuous detection method for the high-throughput detection of multiplex samples. The UV-Fenton degradation process of methylene blue (MB) is continuously on-line monitored through this platform, which is more sensitive than the UV-Vis Spectrum. Moreover, we have realized the sensitive and accurate detection of 5-nitro-8-hydroxyquinoline (5-NQ) with antibacterial and anticancer activities based on chloride-functionalized silver, which paved a way for SERS high-throughput analysis in bioanalysis and other fields.

6.
Materials (Basel) ; 17(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38204062

RESUMO

In a neutral solution, we investigated the effects of Na2[ZnEDTA] concentrations at 0, 6, 12, 18, and 24 g/L on surface morphology, chemical composition, degradation resistance, and in vitro cytocompatibility of micro-arc oxidation (MAO) coatings developed on WE43 (Mg-Y-Nd-Zr) magnesium alloys. The results show that the enhanced Na2[ZnEDTA] concentration increased the Zn amount but slightly decreased the degradation resistance of MAO-treated coatings. Among the zinc-containing MAO samples, the fabricated sample in the base solution added 6 g/L Na2[ZnEDTA] exhibits the smallest corrosion current density (6.84 × 10-7 A·cm-2), while the sample developed in the solution added 24 g/L Na2[ZnEDTA] and contains the highest Zn content (3.64 wt.%) but exhibits the largest corrosion current density (1.39 × 10-6 A·cm-2). Compared to untreated WE43 magnesium alloys, zinc-containing MAO samples promote initial cell adhesion and spreading and reveal enhanced cell viability. Coating degradation resistance plays a more important role in osseogenic ability than Zn content. Among the untreated WE43 magnesium alloys and the treated MAO samples, the sample developed in the base solution with 6 g/L Na2[ZnEDTA] reveals the highest ALP expression at 14 d. Our results indicate that the MAO samples formed in the solution with Na2[ZnEDTA] promoted degradation resistance and osseogenesis differentiation of the WE43 magnesium alloys, suggesting potential clinic applications.

7.
Poult Sci ; 101(6): 101892, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35523046

RESUMO

Antibiotic residues contained in poultry eggs pose threat to human health. However, the classes and concentrations of antibiotics in poultry egg in southwestern China is unknown due to insufficient monitoring and research. A total of 513 egg samples were collected from supermarkets and farm markets in Kunming city in 2020 and the levels of 7 antibiotics were analyzed using ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method. The linear correlation coefficients were above 0.990 for all antibiotics tested. The limits of detection and limits of quantification in poultry eggs were 0.002 to 0.010 µg/g and 0.007 to 0.033 µg/g, respectively. The average recoveries of the 7 analytes from poultry egg samples were 80.00 to 128.01%, with relative standard deviations of less than 13.97%. A total of 93 (18.13%) samples tested positive for antibiotics, with the highest concentration being 2.48 µg/g. The concentration range of ofloxacin, danofloxacin, difloxacin, sulfadimethoxine, sulfamonomethoxine, sulfamethoxypyridazine, and sulfamethoxazole in poultry eggs was 0.01 to 0.37 µg/g, 0.06 to 0.48 µg/g, 0.05 to 0.29 µg/g, 0.03 to 0.16 µg/g, 0.06 to 1.00 µg/g, 0.05 to 0.37, and 0.07 to 2.48 µg/g, respectively. Sulfamonomethoxine was detected from hen eggs with the highest concentration level at 1.00 µg/g. Sulfamethoxazole was detected with the highest concentration level from both duck and quail eggs, at 1.87 and 2.48 µg/g, respectively. The antibiotic with the highest residue level in pheasant eggs was danofloxacin, which was 0.37 µg/g. Sulfamethoxypyridazine was identified in 30 samples with the highest positive rate of 5.85%, sulfadimethoxine was identified in 3 samples with the lowest positive rate of 0.58%. We observed that 7 targeted antibiotic residues in quail eggs and 3 targeted antibiotic residues in pheasant eggs. We also found that there were antibiotic residues in free-range hen eggs and the concentration was not low. The antibiotic with the highest residue level in free-range eggs was sulfamonomethoxine, which was 1.00 µg/g. These findings suggest that continual antibiotic residue monitoring of poultry eggs is essential in China.


Assuntos
Resíduos de Drogas , Sulfametoxipiridazina , Sulfamonometoxina , Animais , Antibacterianos/análise , Galinhas , Cromatografia Líquida de Alta Pressão/veterinária , Resíduos de Drogas/análise , Ovos/análise , Feminino , Fluoroquinolonas , Contaminação de Alimentos/análise , Óvulo/química , Aves Domésticas , Extração em Fase Sólida/veterinária , Sulfadimetoxina/análise , Sulfametoxazol/análise , Sulfametoxipiridazina/análise , Sulfamonometoxina/análise , Sulfonamidas/análise , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas em Tandem/veterinária
8.
Materials (Basel) ; 14(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34640102

RESUMO

In this study, Ti-6Al-4V alloy samples were processed by micro-arc oxidation (MAO) in phytic acid (H12Phy) electrolytes with the addition of different concentrations of EDTA-MgNa2 (Na2MgY) and potassium hydroxide (KOH). The surface characterization and cytocompatibility of MAO-treated samples were evaluated systematically. H12Phy is a necessary agent for MAO coating formation, and the addition of Na2MgY and KOH into the electrolytes increases the surface roughness, micropore size and Mg contents in the coatings. The MAO coatings are primarily composed of anatase, rutile, MgO and Mg3(PO4)2. Magnesium (Mg) ions in the electrolytes enter into MAO coatings by diffusion and electromigration. The MAO coatings containing 2.97 at% Mg show excellent cell viability, adhesion, proliferation, alkaline phosphatase activity, extracellular matrix (ECM) mineralization and collagen secretion, but the cytocompatibility of the MAO coatings containing 6.82 at% Mg was the worst due to the excessively high Mg content. Our results revealed that MAO coatings with proper Mg contents improve the cytocompatibility of the Ti-6Al-4V alloys and have large potential in orthopedic applications.

9.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34556575

RESUMO

Hundreds of millions of smallholders in emerging countries substantially overuse nitrogen (N) fertilizers, driving local environmental pollution and global climate change. Despite local demonstration-scale successes, widespread mobilization of smallholders to adopt precise N management practices remains a challenge, largely due to associated high costs and complicated sampling and calculations. Here, we propose a long-term steady-state N balance (SSNB) approach without these complications that is suitable for sustainable smallholder farming. The hypothesis underpinning the concept of SSNB is that an intensively cultivated soil-crop system with excessive N inputs and high N losses can be transformed into a steady-state system with minimal losses while maintaining high yields. Based on SSNB, we estimate the optimized N application range across 3,824 crop counties for the three staple crops in China. We evaluated SSNB first in ca. 18,000 researcher-managed on-farm trials followed by testing in on-farm trials with 13,760 smallholders who applied SSNB-optimized N rates under the guidance of local extension staff. Results showed that SSNB could significantly reduce N fertilizer use by 21 to 28% while maintaining or increasing yields by 6 to 7%, compared to current smallholder practices. The SSNB approach could become an effective tool contributing to the global N sustainability of smallholder agriculture.

10.
Chem Commun (Camb) ; 56(50): 6798-6801, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32432258

RESUMO

Nanocage-structured materials - heterogeneous binary metal sulfides (MoS2 and Co9S8) in carbon nanocages (Co9S8/MoS2@CNCs) - obtained via step-by-step confined growth display superior Li-storage performance, profiting from the synergistic effect of the bimetallic sulfides, high filling rate of active materials and free interspace in the nanocage structure for volume expansion.

11.
ACS Appl Mater Interfaces ; 12(2): 2059-2066, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31867956

RESUMO

Bimetallic gold core-silver shell (Au@Ag) surface-enhanced Raman scattering (SERS) tags draw broad interest in the fields of biological and environmental analysis. In reported tags, silver coating tended to smooth the surface and merge the original hotspot of Au cores, which was disadvantageous to signal enhancement from the aspect of surface topography. Herein, we developed gold nanorod (AuNR)-bridged Au@Ag SERS tags with uniform three-dimensional (3D) topography for the first time. This unique structure was achieved by selecting waxberry-like Au nanoparticles (NPs) as cores, which were capped by vertically oriented AuNR arrays. Upon selective surface blocking with thiol-ligands, Ag NPs were controlled to anisotropically grow on the tips of the AuNRs, producing high-density homo- (Ag-Ag) and hetero- (Au-Ag) hotspots in a single NP. The 3D hotspots rendered this NP extraordinary SERS enhancement ability (an analytical enhancement factor of 3.4 × 106) 30 times higher than the counterpart with a smooth surface, realizing signal detection from a single NP. More importantly, multiplexing signals ("blank" or multiplex "internal standard") can be achieved by simply changing thiol-ligands, as exemplified in the synthesis of NPs with 8 signatures. Furthermore, the multifunctionality has been demonstrated in living cell/in vivo imaging, photothermal therapy, and SERS substrates for ratiometric quantitative analysis, relying on the inherent internal standard signal. The prepared Au@Ag NPs have great potential as standard tools in many SERS-related fields.


Assuntos
Ouro/química , Nanotubos/química , Análise Espectral Raman , Células A549 , Animais , Cisteamina/química , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Camundongos , Nanotubos/ultraestrutura , Praguicidas/análise , Padrões de Referência , Prata/química
12.
Nanoscale ; 11(25): 12220-12229, 2019 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-31204757

RESUMO

Theranostics nanoplatforms offer opportunities for imaging-guided precision therapy and hold great potential for clinical applications. In most reported works, the imaging unit has a lack of site selectivity, and is always kept in the "on" modality regardless of whether it is in normal tissues or tumor sites, increasing the risk of unsafe treatment. Herein, we designed a near-infrared (NIR) fluorescence-guided theranostics nanoplatform by integrating the functions of tumor-response and photodynamic therapy (PDT)/photothermal therapy (PTT). A novel NIR fluorescent dye, CyPT, with excellent optical and PDT/PTT properties, was synthesized and linked onto the gold nanorods (AuNRs) to form CyPT-AuNRs nanohybrids via a sulfur-sulfur bond that can be broken by glutathione (GSH) with high selectivity and sensitivity. In normal cells where the concentration of GSH is low, the fluorescence of CyPT is quenched by the AuNRs. By contrast, the high level of GSH in tumor cells leads to the breaking of the sulfur-sulfur bond, resulting in the release of CyPT and the accomplishment of a "off-on" fluorescence response. Followed by precise NIR tumor-imaging diagnosis, the PDT and PTT treatment which rely on the released CyPT and AuNRs, respectively, can be effectively performed. The CyPT-AuNRs nanoplatform has been successfully applied to the treatment of tumor xenograft models and no distinct damage has been observed in the nearby normal tissues. This versatile nanoplatform has potential for use in targeted tumor imaging and precision therapy.


Assuntos
Corantes Fluorescentes , Glutationa/metabolismo , Ouro , Nanopartículas Metálicas , Nanotubos/química , Neoplasias Experimentais , Imagem Óptica , Medicina de Precisão , Células A549 , Animais , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Ouro/química , Ouro/farmacologia , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Camundongos , Camundongos Nus , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto
13.
J Mater Chem B ; 7(7): 1149-1159, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-32254783

RESUMO

Photodynamic therapy (PDT) and photothermal therapy (PTT) are effective cancer treatments, and photosensitizers play the most important role in the treatment. However, photosensitizers are insufficient for in vivo tumor treatment. Herein, we develop a small molecule fluorophore Cy-HPT as a novel photosensitizer, which possesses the advantages of near-infrared (NIR) emission, high photothermal conversion efficiency and high singlet oxygen generation efficiency. Moreover, a nanoplatform of HSA@Cy-HPT was synthesized by self-assembly of Cy-HPT and human serum albumin (HSA) in aqueous solution. Compared to Cy-HPT, HSA@Cy-HPT possesses more stable spectral properties, enhances the effect of PDT/PTT, and exhibits more satisfactory in vivo metabolism. HSA@Cy-HPT demonstrates outstanding tumor targeting in subcutaneous tumor xenograft models owing to its enhanced permeability and retention in tumor tissue. Furthermore, HSA@Cy-HPT was successfully utilized in tumor xenograft models and tumor tissue growth was clearly inhibited without any regrowth, extending survival rate of the models. Also, no distinct damage of the normal tissue of tumor xenograft models was observed using hematoxylin & eosin staining. This study presents a promising therapeutic agent for the synergetic PDT and PTT cancer treatment.


Assuntos
Raios Infravermelhos , Nanopartículas/química , Fármacos Fotossensibilizantes/química , Albumina Sérica Humana/química , Animais , Carbocianinas/química , Carbocianinas/farmacologia , Carbocianinas/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Camundongos , Camundongos Nus , Nanopartículas/toxicidade , Neoplasias/patologia , Neoplasias/terapia , Imagem Óptica , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fototerapia , Oxigênio Singlete/química , Oxigênio Singlete/metabolismo , Transplante Heterólogo
14.
ACS Nano ; 11(8): 8429-8436, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28742319

RESUMO

An innovative approach for efficient synthesis of petal-like molybdenum disulfide nanosheets inside hollow mesoporous carbon spheres (HMCSs), the yolk-shell structured MoS2@C, has been developed. HMCSs effectively control and confine in situ growth of MoS2 nanosheets and significantly improve the conductivity and structural stability of the hybrid material. The yolk-shell structured MoS2@C is proven to achieve high reversible capacity (993 mA h g-1 at 1 A g-1 after 200 cycles), superior rate capability (595 mA h g-1 at a current density of 10 A g-1), and excellent cycle performance (962 mA h g-1 at 1 A g-1 after 1000 cycles and 624 mA h g-1 at 5 A g-1 after 400 cycles) when evaluated as an anode material for lithium-ion batteries. This superior performance is attributed to the yolk-shell structure with conductive mesoporous carbon as the shell and the stack of two-dimensional MoS2 nanosheets as the yolk.

15.
ACS Appl Mater Interfaces ; 9(29): 24662-24670, 2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28682585

RESUMO

Among the numerous candidate materials for lithium ion batteries, ferroferric oxide (Fe3O4) has been extensively concerned as a prospective anode material because of its high theoretical specific capacity, abundant resources, low cost, and nontoxicity. Here, we designed and fabricated a unique yolk-shell construction by generating heterogeneous double-shelled SnO2 and nitrogen-doped carbon on Fe3O4 yolk (denoted as Fe3O4@SnO2@C-N nanoboxes). The yolk-shell structured Fe3O4@SnO2@C-N nanoboxes have the adjustable void space, which permits the free expansion of Fe3O4 yolks without breaking the double shells during the lithiation/delithiation processes, avoiding the structural pulverization. Moreover, the heterogeneous double-shelled SnO2@C-N can meaningfully improve the electronic conductivity and enhance the lithium storage performance. Two metal oxides also show the specific synergistic effect, promoting the electrochemistry reaction. As a result, this yolk-shell structured Fe3O4@SnO2@C-N exhibits high specific capacity (870 mA h g-1 at 0.5 A g-1 after 200 cycles), superior rate capability, and long cycle life (670 mA h g-1 at 3 A g-1 after 600 cycles). This design and construction method can be extended to synthesize other yolk-shell nanostructured anode materials with improved electrochemistry performance.

16.
J Mol Model ; 23(4): 105, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28271285

RESUMO

The applicability of a novel macrocyclic multi-carbonyl compound, pillar[4]quinone (P4Q), as the cathode active material for lithium-ion batteries (LIBs) was assessed theoretically. The molecular geometry, electronic structure, Li-binding thermodynamic properties, and the redox potential of P4Q were obtained using density functional theory (DFT) at the M06-2X/6-31G(d,p) level of theory. The results of the calculations indicated that P4Q interacts with Li atoms via three binding modes: Li-O ionic bonding, O-Li···O bridge bonding, and Li···phenyl noncovalent interactions. Calculations also indicated that, during the LIB discharging process, P4Q could yield a specific capacity of 446 mAh g-1 through the utilization of its many carbonyl groups. Compared with pillar[5]quinone and pillar[6]quinone, the redox potential of P4Q is enhanced by its high structural stability as well as the effect of the solvent. These results should provide the theoretical foundations for the design, synthesis, and application of novel macrocyclic carbonyl compounds as electrode materials in LIBs in the future. Graphical Abstract Schematic representation of the proposed charge-discharge mechanism of Pillar[4]quinone as cathode for lithium-ion batteries.

17.
Huan Jing Ke Xue ; 24(5): 28-33, 2003 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-14719256

RESUMO

The co-pyrolysis processes of different proportions of coking-coal, plastic, metallurgical dust (MD) were investigated using thermal analyzer (Setaram Labsys) under a neutral atmosphere of N2 at the sweep rate of 30 mL/min, the linear heating rate and the final pyrolysis temperature were 5 degrees C/min and 1000 degrees C respectively in this study. The experimental results indicated that both the pyrolysis process of coking-coal and that of plastic were radical mechanism. In other word, within the relatively lower temperature range, a large amount of radicals were generated during their pyrolysis processes and stabilized through the intra-radical rearrangement reactions or inter-radical combination reactions. This means that sulfur containing in coal and plastic tends to formed gaseous sulfides, such as H2S, COS, CS2, etc. When co-existing with MD, these sulfides will react with metal oxides containing in MD to form metal sulfide with high stability and the cleaner coke oven gas (COG) were obtained. Within higher temperature interval of 500 degrees C-1000 degrees C, some of the gaseous products after pyrolysis (e.g. H2, CO and C) reinforce the reduction atmosphere that the coking reaction system needs and accelerate the reduction of metal oxides in MD and gasification of metal, which were conductive to the effective removal of sulfur in coke. Therefore, it is definitely feasible to adding waste plastic and MD into coking-coal to remove the sulfur in COG and coke simultaneously.


Assuntos
Coque , Poeira , Plásticos/química , Temperatura Alta , Termogravimetria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA