Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 356: 120616, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518493

RESUMO

Metakaolin-based geopolymers are very promising materials for improving the safety of low and intermediate level radioactive waste disposal, with respect to ordinary Portland cement, due to their excellent immobilization performance for Cs+ and superior chemical stability. However, their application is limited by the fact that the leaching behavior of Cs+ is susceptible to the presence of other ions in the environment. Here, we propose a way to modify a geopolymer using perfluorodecyltriethoxysilane (PDFS), successfully reducing the leaching rate of Cs+ in the presence of multiple competitive cations due to blocking the diffusion of water. The leachability index of the modified samples in deionized water and highly concentrated saline water reached 11.0 and 8.0, respectively. The reaction mechanism between PDFS and geopolymers was systematically investigated by characterizing the microstructure and chemical bonding of the material. This work provides a facile and successful approach to improve the immobilization of Cs ions by geopolymers in real complex environments, and it could be extended to further improve the reliability of geopolymers used in a range of applications.


Assuntos
Resíduos Radioativos , Eliminação de Resíduos , Reprodutibilidade dos Testes , Polímeros , Eliminação de Resíduos/métodos , Íons
2.
Sci Total Environ ; 767: 144973, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33636773

RESUMO

This paper reports a facile route to prepare bulk zeolites with tunable phase compositions and microstructures by combining hydrothermal treatment and geopolymer precursor technique. Amorphous Na-based geopolymer (NaGP) is transformed into crystalline analcime following hydrothermal treatments. By systematically investigating the effects of hydrothermal conditions on the phase compositions and microstructures of the products, the optimal hydrothermal procedure is screened as treating NaGP in 1 M NaOH solution at 160 °C for 6 h. Furthermore, we achieve control over phase compositions of the resulting bulk zeolites by tailoring the initial Na/K ratio of geopolymer precursors. For instance, treating the geopolymer precursor with a Na/K ratio of 9: 1 under the optimal hydrothermal procedure leads to the formation of zeolite consisting of analcime and zeolite-P. The as-prepared adsorbents exhibit outstanding adsorption performance for the hazardous elements, among which analcime-zeolite-P shows an adsorption efficiency of 93.3% for Cs+, and NaGP exhibits an adsorption efficiency of 99.6% for Sr2+. Moreover, we reveal the mechanisms underlying the adsorption of Cs+ and Sr2+ in the adsorbents to be chemisorption. Meanwhile, ion exchanges also occur in NaGP and analcime-zeolite-P during Cs+ adsorption. These results render geopolymers and their derived bulk zeolites promising for hazardous elements adsorption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA