Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Am J Physiol Endocrinol Metab ; 326(6): E832-E841, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38656129

RESUMO

Thyroid dysgenesis (TD) is the common pathogenic mechanism of congenital hypothyroidism (CH). In addition, known pathogenic genes are limited to those that are directly involved in thyroid development. To identify additional candidate pathogenetic genes, we performed forward genetic screening for TD in zebrafish, followed by positional cloning. The candidate gene was confirmed in vitro using the Nthy-ori 3.1 cell line and in vivo using a zebrafish model organism. We obtained a novel zebrafish line with thyroid dysgenesis and identified the candidate pathogenetic mutation TATA-box binding protein associated Factor 1 (taf1) by positional cloning. Further molecular studies revealed that taf1 was needed for the proliferation of thyroid follicular cells by binding to the NOTCH1 promoter region. Knockdown of TAF1 impaired the proliferation and maturation of thyroid cells, thereby leading to thyroid dysplasia. This study showed that TAF1 promoted Notch signaling and that this association played a pivotal role in thyroid development.NEW & NOTEWORTHY In our study, we obtained a novel zebrafish line with thyroid dysgenesis (TD) and identified the candidate pathogenetic mutation TATA-box binding protein associated Factor 1 (taf1). Further researches revealed that taf1 was required for thyroid follicular cells by binding to the NOTCH1 promoter region. Our findings revealed a novel role of TAF1 in thyroid morphogenesis.


Assuntos
Proliferação de Células , Transdução de Sinais , Fatores Associados à Proteína de Ligação a TATA , Glândula Tireoide , Fator de Transcrição TFIID , Peixe-Zebra , Animais , Peixe-Zebra/genética , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIID/genética , Fator de Transcrição TFIID/metabolismo , Transdução de Sinais/genética , Proliferação de Células/genética , Glândula Tireoide/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Disgenesia da Tireoide/genética , Disgenesia da Tireoide/metabolismo , Humanos , Histona Acetiltransferases
2.
Artigo em Inglês | MEDLINE | ID: mdl-38654471

RESUMO

CONTEXT: Congenital hypothyroidism (CH) is the most common endocrine disorder in neonates, but its etiology is still poorly understood. OBJECTIVE: We performed whole exome sequencing to identify novel causative gene for CH and functional studies to validate its role in the occurrence of CH. METHODS: Whole exome sequencing in 98 CH patients not harboring known CH candidate genes and bioinformatic analysis were performed. Functional analysis was performed using morpholino, a synthetic short antisense oligonucleotide that contains 25 DNA bases on a methylene morpholine backbone, in zebrafish and CRISPR‒Cas9-mediated gene knockout in mice. RESULTS: Eukaryotic translation initiation factor 4B (EIF4B) was identified as the most promising candidate gene. The EIF4B gene was inherited in an autosomal recessive model, and one patient with thyroid dysgenesis carried EIF4B biallelic variants (p.S430F/p.P328L). In zebrafish, the knockdown of eif4ba/b expression caused thyroid dysgenesis and growth retardation. Thyroid hormone levels were significantly decreased in morphants compared with controls. Thyroxine treatment in morphants partially rescued growth retardation. In mice, the homozygous conceptuses of Eif4b+/- parents did not survive. Eif4b knockout embryos showed severe growth retardation, including thyroid dysgenesis and embryonic lethality before E18.5. CONCLUSION: These experimental data supported a role for EIF4B function in the pathogenesis of the hypothyroid phenotype seen in CH patients. Our work indicated that EIF4B was identified as a novel candidate gene in CH. EIF4B is essential for animal survival, but further studies are needed to validate its role in the pathogenesis of CH.

3.
Nat Commun ; 15(1): 3165, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605010

RESUMO

The mechanisms of bifurcation, a key step in thyroid development, are largely unknown. Here we find three zebrafish lines from a forward genetic screening with similar thyroid dysgenesis phenotypes and identify a stop-gain mutation in hgfa and two missense mutations in met by positional cloning from these zebrafish lines. The elongation of the thyroid primordium along the pharyngeal midline was dramatically disrupted in these zebrafish lines carrying a mutation in hgfa or met. Further studies show that MAPK inhibitor U0126 could mimic thyroid dysgenesis in zebrafish, and the phenotypes are rescued by overexpression of constitutively active MEK or Snail, downstream molecules of the HGF/Met pathway, in thyrocytes. Moreover, HGF promotes thyrocyte migration, which is probably mediated by downregulation of E-cadherin expression. The delayed bifurcation of the thyroid primordium is also observed in thyroid-specific Met knockout mice. Together, our findings reveal that HGF/Met is indispensable for the bifurcation of the thyroid primordium during thyroid development mediated by downregulation of E-cadherin in thyrocytes via MAPK-snail pathway.


Assuntos
Fator de Crescimento de Hepatócito , Disgenesia da Tireoide , Animais , Camundongos , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Caderinas/genética , Disgenesia da Tireoide/genética , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo
4.
Ann Lab Med ; 44(4): 343-353, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38433572

RESUMO

Background: Genetic defects in the human thyroid-stimulating hormone (TSH) receptor (TSHR) gene can cause congenital hypothyroidism (CH). However, the biological functions and comprehensive genotype-phenotype relationships for most TSHR variants associated with CH remain unexplored. We aimed to identify TSHR variants in Chinese patients with CH, analyze the functions of the variants, and explore the relationships between TSHR genotypes and clinical phenotypes. Methods: In total, 367 patients with CH were recruited for TSHR variant screening using whole-exome sequencing. The effects of the variants were evaluated by in-silico programs such as SIFT and polyphen2. Furthermore, these variants were transfected into 293T cells to detect their Gs/cyclic AMP and Gq/11 signaling activity. Results: Among the 367 patients with CH, 17 TSHR variants, including three novel variants, were identified in 45 patients, and 18 patients carried biallelic TSHR variants. In vitro experiments showed that 10 variants were associated with Gs/cyclic AMP and Gq/11 signaling pathway impairment to varying degrees. Patients with TSHR biallelic variants had lower serum TSH levels and higher free triiodothyronine and thyroxine levels at diagnosis than those with DUOX2 biallelic variants. Conclusions: We found a high frequency of TSHR variants in Chinese patients with CH (12.3%), and 4.9% of cases were caused by TSHR biallelic variants. Ten variants were identified as loss-of-function variants. The data suggest that the clinical phenotype of CH patients caused by TSHR biallelic variants is relatively mild. Our study expands the TSHR variant spectrum and provides further evidence for the elucidation of the genetic etiology of CH.


Assuntos
Hipotireoidismo Congênito , Humanos , China , Hipotireoidismo Congênito/diagnóstico , Hipotireoidismo Congênito/genética , AMP Cíclico , Oxidases Duais/genética , Mutação , Fenótipo , Receptores da Tireotropina/genética , Tireotropina
5.
Thyroid ; 34(3): 324-335, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38183624

RESUMO

Background: Congenital hypothyroidism (CH) is the most common neonatal metabolic disorder. In patients with CH in China, thyroid dyshormonogenesis is more common than thyroid dysgenesis; however, the genetic causes of CH due to thyroid dyshormonogenesis remain largely unknown. Therefore, we aimed at identifying novel candidate causative genes for CH. Methods: To identify novel CH candidate genes, a total of 599 patients with CH were enrolled and next-generation sequencing was performed. The functions of the identified variants were confirmed using HEK293T and FTC-133 cell lines in vitro and in a mouse model organism in vivo. Results: Three pathogenic contactin 6 (CNTN6) variants were identified in two patients with CH. Pedigree analysis showed that CH caused by CNTN6 variants was inherited in an autosomal recessive pattern. The CNTN6 gene was highly expressed in the thyroid in humans and mice. Cntn6 knockout mice presented with thyroid dyshormonogenesis and CH due to the decreased expression of crucial genes for thyroid hormone biosynthesis (Slc5a5, Tpo, and Duox2). All three CNTN6 variants resulted in the blocking of the release of the Notch intracellular domain, which could not translocate into the nucleus, impaired NOTCH1 transcriptional activity, and decreased expression of SLC5A5, TPO, and DUOX2. Further, we found that DTX1 was required for CNTN6 to promote thyroid hormone biosynthesis through Notch signaling. Conclusions: This study demonstrated that CNTN6 is a novel causative gene for CH through the mediation of thyroid hormone biosynthesis via Notch signaling, which provides new insights into the genetic background and mechanisms involved in CH and thyroid dyshormonogenesis.


Assuntos
Hipotireoidismo Congênito , Humanos , Animais , Camundongos , Hipotireoidismo Congênito/genética , Oxidases Duais/genética , Células HEK293 , Mutação , Iodeto Peroxidase/genética , Hormônios Tireóideos , Contactinas/genética
6.
Nat Commun ; 14(1): 8082, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057310

RESUMO

The pathogenesis of thyroid dysgenesis (TD) is not well understood. Here, using a combination of single-cell RNA and spatial transcriptome sequencing, we identify a subgroup of NF-κB-activated thyrocytes located at the center of thyroid tissues in postnatal mice, which maintained a partially mesenchymal phenotype. These cells actively protruded out of the thyroid primordium and generated new follicles in zebrafish embryos through continuous tracing. Suppressing NF-κB signaling affected thyrocyte migration and follicle formation, leading to a TD-like phenotype in both mice and zebrafish. Interestingly, during thyroid folliculogenesis, myeloid cells played a crucial role in promoting thyrocyte migration by maintaining close contact and secreting TNF-α. We found that cebpa mutant zebrafish, in which all myeloid cells were depleted, exhibited thyrocyte migration defects. Taken together, our results suggest that myeloid-derived TNF-α-induced NF-κB activation plays a critical role in promoting the migration of vertebrate thyrocytes for follicle generation.


Assuntos
NF-kappa B , Células Epiteliais da Tireoide , Animais , Camundongos , Células Mieloides , Fator de Necrose Tumoral alfa , Peixe-Zebra
7.
Horm Res Paediatr ; 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37703865

RESUMO

INTRODUCTION: Congenital hypothyroidism (CH), the most common neonatal endocrine disorder world-wide, can be caused by variants in the thyroid peroxidase (TPO) gene. This study aimed to identify TPO variants in Chinese patients with CH, analyze their impact on TPO function, and establish relationships between TPO genotypes and clinical characteristics. METHODS: A total of 328 patients with CH were screened for TPO variants by performing whole exome sequencing. The function of the detected TPO variants was investigated via transfection assays in vitro. The pathogenic effect of five novel variants was further assessed in silico. RESULTS: Among 328 patients with CH, 19 TPO variants, including six novel ones, were identified in 43 patients. Eighteen patients (5.5%) carried biallelic TPO variants. In vitro experiments showed that TPO activity was impaired to varying degrees in 17 variants. Furthermore, we determined that a residual TPO enzyme activity threshold of 15% may serve as a criterion for differentiating CH severity. CONCLUSIONS: According to our study, the prevalence of TPO variants among Chinese patients with CH was 13.1 %. Five novel variants led to impaired TPO function by altering its structure or by affecting its expression or cellular localization, which should result in impaired thyroid hormone synthesis.

8.
Front Endocrinol (Lausanne) ; 14: 1131078, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37455914

RESUMO

Background: Hashimoto's thyroiditis (HT) is an autoimmune thyroid disease. Papillary thyroid carcinoma (PTC) is the most common endocrine cancer. In recent years the rate of coexistence between PTC and HT has increased but the relationship between them remains unclear, meaning it is necessary to find potential biomarkers for PTC coexistence with HT to predict its potential pathways. Method: A co-expression network was constructed using the weighted gene co-expression network analysis (WGCNA) in the R package. The modules of PTC associated with HT (PTC-W) were identified from the GSE138198 dataset. Protein-protein interaction network (PPI) was used to screen the hub genes. Immunohistochemical (IHC) analysis was performed to validate the expression of the hub genes in tissues. Clinical data from The Cancer Genome Atlas (TCGA) datasets were used to analyse the prognosis of the hub genes. Gene set enrichment analysis (GSEA) was used to screen potential pathways of PTC-W. Result: The MEbrown module representing the most significant module, with 958 differentially expressed genes (DEGs), was screened in PTC-W, based on WGCNA analysis. Through PPI, SERPINA1 was identified as a hub gene. Immunostaining validated that SERPINA1 was highly expressed in PTC-W. Moreover, PTC-W expressing SERPINA1 exhibits a better prognosis than PTC without HT (PTC-WO). Conclusion: Our study demonstrates that SERPINA1 promotes the occurrence of PTC-W, and its prognosis is better than PTC-WO. SERPINA1 promotes a better prognosis for PTC-W, possibly through a tumour inhibition signalling pathway.


Assuntos
Doença de Hashimoto , Neoplasias da Glândula Tireoide , Humanos , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/complicações , Neoplasias da Glândula Tireoide/diagnóstico , Neoplasias da Glândula Tireoide/genética , Doença de Hashimoto/complicações , Doença de Hashimoto/genética , Doença de Hashimoto/patologia , Prognóstico , Perfilação da Expressão Gênica , alfa 1-Antitripsina/genética
9.
J Med Genet ; 60(9): 874-884, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36898841

RESUMO

BACKGROUND: In several countries, thyroid dyshormonogenesis is more common than thyroid dysgenesis in patients with congenital hypothyroidism (CH). However, known pathogenic genes are limited to those directly involved in hormone biosynthesis. The aetiology and pathogenesis of thyroid dyshormonogenesis remain unknown in many patients. METHODS: To identify additional candidate pathogenetic genes, we performed next-generation sequencing in 538 patients with CH and then confirmed the functions of the identified genes in vitro using HEK293T and Nthy-ori 3.1 cells, and in vivo using zebrafish and mouse model organisms. RESULTS: We identified one pathogenic MAML2 variant and two pathogenic MAMLD1 variants that downregulated canonical Notch signalling in three patients with CH. Zebrafish and mice treated with N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butylester, a γ-secretase inhibitor exhibited clinical manifestations of hypothyroidism and thyroid dyshormonogenesis. Through organoid culture of primary mouse thyroid cells and transcriptome sequencing, we demonstrated that Notch signalling within thyroid cells directly affects thyroid hormone biosynthesis rather than follicular formation. Additionally, these three variants blocked the expression of genes associated with thyroid hormone biosynthesis, which was restored by HES1 expression. The MAML2 variant exerted a dominant-negative effect on both the canonical pathway and thyroid hormone biosynthesis. MAMLD1 also regulated hormone biosynthesis through the expression of HES3, the target gene of the non-canonical pathway. CONCLUSIONS: This study identified three mastermind-like family gene variants in CH and revealed that both canonical and non-canonical Notch signalling affected thyroid hormone biosynthesis.


Assuntos
Hipotireoidismo Congênito , Animais , Humanos , Camundongos , Hipotireoidismo Congênito/genética , Proteínas de Ligação a DNA/genética , Células HEK293 , Mutação , Proteínas Nucleares/genética , Hormônios Tireóideos/genética , Transativadores/genética , Fatores de Transcrição/genética , Peixe-Zebra
10.
Front Endocrinol (Lausanne) ; 14: 920548, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36824359

RESUMO

Background: ISL LIM homeobox 2, also known as insulin gene enhancer protein ISL-2 (ISL2), is a transcription factor gene that participates in a wide range of developmental events. However, the role of ISL2 in the hypothalamus-pituitary-thyroid axis is largely unknown. In the present study, we characterized the expression patterns of ISL2 and revealed its regulative role during embryogenesis using zebrafish. Methods: We used the CRISPR/Cas9 system to successfully establish homozygous ISL2-orthologue (isl2a and isl2b) knockout zebrafish. Moreover, we utilized these knockout zebrafish to analyze the pituitary and thyroid phenotypes in vivo. For further molecular characterization, in situ hybridization and immunofluorescence were performed. Results: The isl2a mutant zebrafish presented with thyroid hypoplasia, reduced whole-body levels of thyroid hormones, increased early mortality, gender imbalance, and morphological retardation during maturity. Additionally, thyrotropes, a pituitary cell type, was notably decreased during development. Importantly, the transcriptional levels of pituitary-thyroid axis hormones-encoding genes, such as tshba, cga, and tg, were significantly decreased in isl2a mutants. Finally, the thyroid dysplasia in isl2a mutant larvae may be attributed to a reduction in proliferation rather than changes in apoptosis. Conclusions: In summary, isl2a regulates the transcriptional levels of marker genes in hypothalamus-pituitary-thyroid axis, and isl2a knockout causing low thyroid hormone levels in zebrafish. Thus, isl2a identified by the present study, is a novel regulator for pituitary cell differentiation in zebrafish, resulting in thyroid gland hypoplasia and phenotypes of hypothyroidism.


Assuntos
Fatores de Transcrição , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Hipófise/metabolismo , Hormônios Tireóideos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
11.
Clin Transl Med ; 13(1): e1007, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36627765

RESUMO

BACKGROUND: SMC5/6 complex plays a vital role in maintaining genome stability, yet the relationship with human diseases has not been described. METHODS: SMC5 variation was identified through whole-exome sequencing (WES) and verified by Sanger sequencing. Immunoprecipitation, cytogenetic analysis, fluorescence activated cell sorting (FACS) and electron microscopy were used to elucidate the cellular consequences of patient's cells. smc5 knockout (KO) zebrafish and Smc5K371del knock-in mouse models were generated by CRISPR-Cas9. RNA-seq, quantitative real-time PCR (qPCR), western blot, microquantitative computed tomography (microCT) and histology were used to explore phenotypic characteristics and potential mechanisms of the animal models. The effects of Smc5 knockdown on mitotic clonal expansion (MCE) during adipogenesis were investigated through Oil Red O staining, proliferation and apoptosis assays in vitro. RESULTS: We identified a homozygous in-frame deletion of Arg372 in SMC5, one of the core subunits of the SMC5/6 complex, from an adult patient with microcephalic primordial dwarfism, chromosomal instability and insulin resistance. SMC5 mutation disrupted its interaction with its interacting protein NSMCE2, leading to defects in DNA repair and chromosomal instability in patient fibroblasts. Smc5 KO zebrafish showed microcephaly, short length and disturbed glucose metabolism. Smc5 depletion triggers a p53-related apoptosis, as concomitant deletion of the p53 rescued growth defects phenotype in zebrafish. An smc5K371del knock-in mouse model exhibited high mortality, severe growth restriction and fat loss. In 3T3-L1 cells, the knockdown of smc5 results in impaired MCE, a crucial step in adipogenesis. This finding implies that defective cell survival and differentiation is an important mechanism linking growth disorders and metabolic homeostasis imbalance.


Assuntos
Nanismo , Resistência à Insulina , Animais , Camundongos , Adulto , Humanos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Resistência à Insulina/genética , Proteína Supressora de Tumor p53/genética , Nanismo/genética , Fenótipo , Instabilidade Cromossômica , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Ligases/genética , Ligases/metabolismo
12.
J Allergy Clin Immunol ; 151(4): 1040-1049.e5, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36587848

RESUMO

BACKGROUND: The pathogenesis of hereditary angioedema (HAE) type I and type II is linked to defective C1 esterase inhibitor (C1-INH) encoded by the SERPING1 gene. There are substantial variabilities in the clinical presentations of patients with HAE that are not directly correlated to the serum levels of C1-INH. The impact of SERPING1 variants on C1-INH expression, structure, and function is incompletely understood. OBJECTIVE: To investigate the influence of SERPING1 variants on the C1-INH expression, structure, and function of 20 patients with HAE from 14 families with no prior genetic diagnosis. METHODS: Patients underwent whole-exome sequencing (WES). If no variants were identified, whole-genome sequencing (WGS) was performed. Except for the frameshift and large deletions, each C1-INH variant was recombinantly produced and, if synthesized and secreted, was subjected to structural, oligosaccharide, and functional analyses. RESULTS: We identified 11 heterozygous variants in the SERPING1 gene, of which 5 were classified as pathogenic (E85Dfs∗63, N166Qfs∗91, K201Qfs∗56, P399A, and R466H) and 6 as variants of uncertain significance (C130W, I224S, N272del, K273del, L349F, and F471C). Three large heterozygous deletions were discovered through WGS. Our data indicate that C130W, N272del, P399A, and F471C are poorly synthesized, I224S prevents proper C1-INH folding, and K273del impairs C1-INH function by adding an additional oligosaccharide. Further evaluation suggests that compound variant P399A/L349F contributes to a more severe clinical phenotype. CONCLUSIONS: Our combined approach of WES and WGS uncovered SERPING1 gene alternations in each patient. The recombinant protein production followed by systematic antigenic, structural, and functional assessment facilitates the identification of underlying pathogenic mechanisms in HAE.


Assuntos
Angioedemas Hereditários , Proteína Inibidora do Complemento C1 , Humanos , Proteína Inibidora do Complemento C1/genética , Angioedemas Hereditários/genética , Angioedemas Hereditários/diagnóstico , Mutação da Fase de Leitura , Fenótipo , Heterozigoto
13.
Biochem Biophys Res Commun ; 642: 21-26, 2023 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-36543020

RESUMO

The thyroid follicular cells originate from the foregut endoderm and elucidating which genes and signaling pathways regulate their development is crucial for understanding developmental disorders as well as diseases in adulthood. We exploited unique advantages of the zebrafish model to carry an ENU-based forward mutagenesis screen aiming at identifying genes involved in the development and function of the thyroid follicular cells. ENU is an excellent chemical mutagen due to its high mutation efficiency and an indiscriminate selection of genes. A total of 1606 F2 families from 36 ENU treated founders was raised and embryos from F3 generation were collected at 5dpf to perform the whole embryo in situ hybridization with a cocktail probe of thyroid marker thyroglobulin(tg), pituitary marker thyroid stimulating hormone (tshba) to determine the mutagenic phenotype. Among the 1606 F2 families, 112 F2 mutant families with normal development stages except for thyroid dysfunction were identified and divided into three different groups according to their phenotypic characteristics. Further studies of the mutants are likely to shed more insights into the molecular basis of both the thyroid development and function in the zebrafish and vertebrate.


Assuntos
Glândula Tireoide , Peixe-Zebra , Animais , Peixe-Zebra/genética , Testes Genéticos , Mutação , Mutagênese
14.
J Steroid Biochem Mol Biol ; 225: 106191, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36154887

RESUMO

17ß-Hydroxysteroid dehydrogenase type 3 (17ß-HSD3) deficiency is rarely reported in Chinese patients with 46, XY disorders of sexual development (DSD). Seven subjects with 17ß-HSD3 deficiency were identified from 206 Chinese 46, XY DSD patients using targeted next-generation sequencing (NGS). Serum AD and T levels were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). In silico and functional studies were performed to evaluate the enzymatic activity impairment of HSD17B3 variants. A minigene assay was performed in an exonic splicing variant. Our results showed that four novel and five reported HSD17B3 variants were identified in 7 unrelated patients. The patients showed cryptic presentation during childhood and classical virilization after puberty with T/AD ratio< 0.4. A heterozygous large deletion from the 5'UTR to exon 1 was identified in a patient with a monoallelic variant of p.N130S. Although predicted to be 'likely pathogenic', only p. S232P and p. S160F drastically reduced the enzymatic activity of 17ß-HSD3. A previously reported 'missense' variant c 0.277 G>A (p. E93K) was revealed to have no impact on enzyme activity but resulted in aberrant splicing of exon 3 and was reclassified as an exonic splicing variant. In our study, one nonsense, one exonic splicing, one deletion, one large deletion and five missense variants were detected in patients with 17ß-HSD3 deficiency, expanding the clinical and molecular profile of this disorder. In silico analysis should be cautiously interpreted when the heredity pattern and functional study are inconsistent.


Assuntos
Transtorno 46,XY do Desenvolvimento Sexual , Feminino , Humanos , Transtorno 46,XY do Desenvolvimento Sexual/genética , Cromatografia Líquida , Espectrometria de Massas em Tandem , 17-Hidroxiesteroide Desidrogenases/química , China
15.
J Cell Mol Med ; 26(15): 4292-4304, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35789100

RESUMO

Nonsyndromic cleft palate only (NSCP) is a common congenital malformation worldwide. In this study, we report a three-generation pedigree with NSCP following the autosomal-dominant pattern. Whole-exome sequencing and Sanger sequencing revealed that only the frameshift variant c.1012dupG [p. E338Gfs*26] in PARD3 cosegregated with the disease. In zebrafish embryos, ethmoid plate patterning defects were observed with PARD3 ortholog disruption or expression of patient-derived N-terminal truncating PARD3 (c.1012dupG), which implicated PARD3 in ethmoid plate morphogenesis. PARD3 plays vital roles in determining cellular polarity. Compared with the apical distribution of wild-type PARD3, PARD3-p. E338Gfs*26 mainly localized to the basal membrane in 3D-cultured MCF-10A epithelial cells. The interaction between PARD3-p. E338Gfs*26 and endogenous PARD3 was identified by LC-MS/MS and validated by co-IP. Immunofluorescence analysis showed that PARD3-p. E338Gfs*26 substantially altered the localization of endogenous PARD3 to the basement membrane in 3D-cultured MCF-10A cells. Furthermore, seven variants, including one nonsense variant and six missense variants, were identified in the coding region of PARD3 in sporadic cases with NSCP. Subsequent analysis showed that PARD3-p. R133*, like the insertion variant of c.1012dupG, also changed the localization of endogenous full-length PARD3 and that its expression induced abnormal ethmoid plate morphogenesis in zebrafish. Based on these data, we reveal PARD3 gene variation as a novel candidate cause of nonsyndromic cleft palate only.


Assuntos
Fenda Labial , Fissura Palatina , Animais , Cromatografia Líquida , Fenda Labial/genética , Fissura Palatina/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Espectrometria de Massas em Tandem , Peixe-Zebra/genética
16.
Gen Comp Endocrinol ; 323-324: 114033, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35367205

RESUMO

Congenital hypothyroidism (CH) is a highly prevalent but treatable neonatal endocrine disorder. Thyroid peroxidase (TPO) catalyzes key reactions in thyroid hormone (TH) synthesis. TPO mutations have been found to underlie approximately 5% of congenital hypothyroidism in Chinese patients with more severe phenotypes, the treatment of whom usually requires a higher dose of L-thyroxine. The Tpo gene of zebrafish has 66% homology with the human TPO gene, and synteny analysis has indicated that it is likely a human TPO ortholog. In this study, we generated a tpo-/- mutant zebrafish line through knockout of tpo with CRISPR/Cas9 and investigated the associated phenotypes. Tpo-/- mutant zebrafish displayed growth retardation; an increased number of thyroid follicular cells; and abnormal extrathyroidal phenotypes including pigmentation defects, erythema in the thoracic region, delayed scale development and failure of swim bladder secondary lobe formation. All these abnormal phenotypes were reversed by 30 nM thyroxine (T4) treatment starting at 1 month of age. Tpo-/- mutants also showed increased glucose levels during larval stages, and the increases were induced at least in part by increasing glucagon and decreasing insulin expression. Our work indicates that tpo-mutant zebrafish may serve as a human congenital hypothyroidism model for studying TPO- and TH-related disease mechanisms.


Assuntos
Hipotireoidismo Congênito , Animais , Hipotireoidismo Congênito/genética , Glucose , Homeostase , Humanos , Iodeto Peroxidase/genética , Mutação , Hormônios Tireóideos , Tiroxina , Peixe-Zebra
17.
Int J Endocrinol ; 2022: 6243696, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392249

RESUMO

Background: BRAF exon 15 p.V600E (BRAF V600E) mutation has been established as an important molecular marker for papillary thyroid carcinoma diagnosis by ultrasound-guided fine-needle aspiration biopsy (FNAB). Sanger sequencing is the gold standard for detecting BRAF V600E mutations but fails to identify low-frequency mutations. However, droplet digital PCR (ddPCR) is a popular new method for detecting low-frequency mutations. Here, we compare the efficiency of droplet digital PCR (ddPCR) and Sanger sequencing for detection of the BRAF V600E mutation in thyroid fine-needle aspiration (FNA) samples. Methods: Thyroid fine-needle aspiration samples from 278 patients with 310 thyroid nodules were collected. Sanger sequencing and ddPCR were conducted to detect the BRAF V600E mutation. Results: The BRAF V600E mutation was found in 94 nodules (30.32%) by ddPCR and 40 nodules (12.90%) by Sanger sequencing in 310 FNA samples. A total of 119 nodules were confirmed PTC by postsurgical pathology. Among which the BRAF mutation was found in 80 (67.23%) nodules by ddPCR and 31 (26.05%) by Sanger sequencing. All nodules carrying the mutation detected by Sanger sequencing (SS+) were verified by ddPCR (ddPCR+). Also, all nodules with no mutation detected by ddPCR were interpreted as wild-type by Sanger sequencing (SS-). In addition. Almost all SS+/ddPCR + nodules (95.00%; 38/40) and SS-/ddPCR + nodules (100.00%; 54/54) displayed a BRAF mutation rate of >5% and <15%, respectively, indicating easy misdetection by Sanger sequencing when the mutation rate is between 5 and 15%. Conclusion: ddPCR has higher sensitivity than Sanger sequencing and we propose ddPCR as a supplement to Sanger sequencing in molecular testing of BRAF using FNAB samples.

18.
Nat Commun ; 13(1): 775, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35140214

RESUMO

Hashimoto's thyroiditis (HT) is the most common autoimmune disease characterized by lymphocytic infiltration and thyrocyte destruction. Dissection of the interaction between the thyroidal stromal microenvironment and the infiltrating immune cells might lead to a better understanding of HT pathogenesis. Here we show, using single-cell RNA-sequencing, that three thyroidal stromal cell subsets, ACKR1+ endothelial cells and CCL21+ myofibroblasts and CCL21+ fibroblasts, contribute to the thyroidal tissue microenvironment in HT. These cell types occupy distinct histological locations within the thyroid gland. Our experiments suggest that they might facilitate lymphocyte trafficking from the blood to thyroid tissues, and T cell zone CCL21+ fibroblasts may also promote the formation of tertiary lymphoid organs characteristic to HT. Our study also demonstrates the presence of inflammatory macrophages and dendritic cells expressing high levels of IL-1ß in the thyroid, which may contribute to thyrocyte destruction in HT patients. Our findings thus provide a deeper insight into the cellular interactions that might prompt the pathogenesis of HT.


Assuntos
Microambiente Celular/imunologia , Doença de Hashimoto/metabolismo , Linfócitos/metabolismo , Células Epiteliais da Tireoide/metabolismo , Glândula Tireoide/metabolismo , Doenças Autoimunes/metabolismo , Quimiocina CCL21/metabolismo , Citocinas/metabolismo , Sistema do Grupo Sanguíneo Duffy , Células Endoteliais/metabolismo , Humanos , Interleucina-1beta , Células Mieloides , Receptores de Superfície Celular , Glândula Tireoide/patologia
19.
J Clin Endocrinol Metab ; 107(6): e2610-e2618, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35043964

RESUMO

CONTEXT: 17α-Hydroxylase/17,20-lyase deficiency (17OHD) is caused by a human CYP17A1 gene mutation and has the classical phenotype of hypertension, hypokalemia, sexual infantilism, and primary amenorrhea in females (46,XX) and disorders of sexual development in males (46,XY). To date, few cases of 17OHD have been reported, and the likelihood of pregnancy has rarely been explored. OBJECTIVE: To study the clinical characteristics, phenotype heterogeneity, genotyping, and the likelihood of pregnancy of patients with 17OHD. DESIGN: Genotype analysis was performed by direct sequencing of the CYP17A1 gene and next-generation sequencing in nonclassical patients. In vitro enzyme activity assays and 3-dimensional structure observations were used to assess the function of 3 missense mutations of the CYP17A1 gene. Progestin-primed ovarian stimulation (PPOS) was chosen for ovulation induction in 2 patients. RESULTS: Eight mutations were identified from 13 patients, including the homozygous mutations p. N395D and p. R496C and compound heterozygous mutations p. Y329fs/p. A421A and p. I332T/p. D487_F489del in 4 nonclassical patients. For the 3 missense mutations, an in vitro functional study showed mild impairment of 17α-hydroxylase activities 15.3-25.0% but residual 17,20-lyase activities 6.6%-9.4%. Two 46,XX females succeeded in pregnancy and delivery by combined PPOS, in vitro fertilization embryo transfer (IVF-ET), and the use of low-dose glucocorticoids. CONCLUSIONS: Partial 17OHD present nonclassical clinical features, without hypertension and hypokalemia. Successful pregnancy in such 46,XX patients could be attained by the appropriate choice of ovulation induction regimen, precise dose of glucocorticoid to reduce progesterone levels, and the use of IVF-ET.


Assuntos
Hiperplasia Suprarrenal Congênita , Hipertensão , Hipopotassemia , Hiperplasia Suprarrenal Congênita/genética , Feminino , Fertilidade , Humanos , Masculino , Oxigenases de Função Mista , Mutação , Fenótipo , Esteroide 17-alfa-Hidroxilase/genética
20.
Clin Endocrinol (Oxf) ; 96(4): 617-626, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34374102

RESUMO

OBJECTIVE: Congenital hypothyroidism (CH) is known to be due to thyroid dyshormonogenesis (DH), which is mostly inherited in an autosomal recessive inheritance pattern or thyroid dysgenesis (TD), whose inheritance pattern is controversial and whose molecular etiology remains poorly understood. DESIGN AND METHODS: The variants in 37 candidate genes of CH, including 25 genes related to TD, were screened by targeted exon sequencing in 205 Chinese patients whose CH cannot be explained by biallelic variants in genes related to DH. The inheritance pattern of the genes was analyzed in family trios or quartets. RESULTS: Of the 205 patients, 83 patients carried at least one variant in 19 genes related to TD, and 59 of those 83 patients harbored more than two variants in distinct candidate genes for CH. Biallelic or de novo variants in the genes related to TD in Chinese patients are rare. We also found nine probands carried only one heterozygous variant in the genes related to TD that were inherited from a euthyroid either paternal or maternal parent. These findings did not support the monogenic inheritance pattern of the genes related to TD in CH patients. Notably, in family trio or quartet analysis, of 36 patients carrying more than two variants in distinct genes, 24 patients carried these variants inherited from both their parents, which indicated that the oligogenic inheritance pattern of the genes related to TD should be considered in CH. CONCLUSIONS: Our study expanded the variant spectrum of the genes related to TD in Chinese CH patients. It is rare that CH in Chinese patients could be explained by monogenic germline variants in genes related to TD. The hypothesis of an oligogenic origin of the CH should be considered.


Assuntos
Hipotireoidismo Congênito , Disgenesia da Tireoide , China , Hipotireoidismo Congênito/diagnóstico , Hipotireoidismo Congênito/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação/genética , Disgenesia da Tireoide/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA