Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 159: 106886, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37062255

RESUMO

The extraction of vessels from computed tomography angiography (CTA) is significant in diagnosing and evaluating vascular diseases. However, due to the anatomical complexity, wide intensity distribution, and small volume proportion of vessels, vessel extraction is laborious and time-consuming, and it is easy to lead to error-prone diagnostic results in clinical practice. This study proposes a novel comprehensive vessel extraction framework, called the Local Iterative-based Vessel Extraction Network (LIVE-Net), to achieve 3D vessel segmentation while tracking vessel centerlines. LIVE-Net contains dual dataflow pathways that work alternately: an iterative tracking network and a local segmentation network. The former can generate the fine-grain direction and radius prediction of a vascular patch by using the attention-embedded atrous pyramid network (aAPN), and the latter can achieve 3D vascular lumen segmentation by constructing the multi-order self-attention U-shape network (MOSA-UNet). LIVE-Net is trained and evaluated on two datasets: the MICCAI 2008 Coronary Artery Tracking Challenge (CAT08) dataset and head and neck CTA dataset from the clinic. Experimental results of both tracking and segmentation show that our proposed LIVE-Net exhibits superior performance compared with other state-of-the-art (SOTA) networks. In the CAT08 dataset, the tracked centerlines have an average overlap of 95.2%, overlap until first error of 91.2%, overlap with the clinically relevant vessels of 98.3%, and error distance inside of 0.21 mm. The corresponding tracking overlap metrics in the head and neck CTA dataset are 96.7%, 91.0%, and 99.8%, respectively. In addition, the results of the consistent experiment also show strong clinical correspondence. For the segmentation of bilateral carotid and vertebral arteries, our method can not only achieve better accuracy with an average dice similarity coefficient (DSC) of 90.03%, Intersection over Union (IoU) of 81.97%, and 95% Hausdorff distance (95%HD) of 3.42 mm , but higher efficiency with an average time of 67.25 s , even three times faster compared to some methods applied in full field view. Both the tracking and segmentation results prove the potential clinical utility of our network.


Assuntos
Angiografia por Tomografia Computadorizada , Tomografia Computadorizada por Raios X , Vasos Coronários , Artérias Carótidas , Processamento de Imagem Assistida por Computador/métodos
2.
Nanomaterials (Basel) ; 12(7)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35407250

RESUMO

Irradiation structural damage (e.g., radiation tracks, amorphous layers, and vesicles) is widely observed in lunar soil grains. Previous experiments have revealed that irradiation damage is caused by the injection of solar wind and solar flare energetic particles. In this study, cordierite and gabbro were selected as analogs of shallow and deep excavated lunar crust materials for proton irradiation experiments. The fluence was 1.44 ± 0.03 × 1018 H+/cm2, which is equivalent to 102 years of average solar wind proton implantation on the Moon. Before and after irradiation, structural damage in samples is detected by slow positron annihilation technology (PAT), Doppler broadening (DB) measurement, focused ion beam (FIB), and transmission electron microscopy (TEM). The DB results showed the structural damage peaks of irradiated gabbro and cordierite were located at 40 and 45 nm. Hydrogen diffused to a deeper region and it reached beyond depths of 150 and 136 nm for gabbro and cordierite, respectively. Hydrogen atoms occupied the original vacancy defects and formed vacancy sites-hydrogen atom complexes, which affected the annihilation of positrons with electrons in the vacancy defects. All of the DB results were validated by TEM. This study proves that the positron annihilation technique has an excellent performance in the detection of defects in the whole structure of the sample. In combination with TEM and other detection methods, this technology could be used for the detection of structural damage in extraterrestrial samples.

3.
Fish Shellfish Immunol ; 122: 206-214, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35158069

RESUMO

For commercial aquatic animals, hypoxia phenomenon often occurs in live transport and aquaculture. In previous studies, much interest has been focused on antioxidant enzyme activities and could not present the complexities. The multifaceted responses, especially considering physiological indexes, histological structure, cell apoptosis, and immune pathways, are still unknown. In this study, we investigated the comprehensive hypoxic responses of Marsupenaeus japonicus. The results showed that the physiological indexes showed time-dependent changes upon hypoxia stress. Hypoxia stress led to significant tissue damage and cell apoptosis in the gill and hepatopancreas. Compared with the control group, the apoptosis index (AI) of the 12 h hypoxic treatment increased significantly (p < 0.05) in the gills and hepatopancreas. Comparative transcriptome analysis identified 900 and 1400 differentially expressed genes (DEGs) in the gill and hepatopancreas, respectively. Several DEGs were related to the lysosome, glycolysis/gluconeogenesis, citrate cycle, and apoptosis, and seven of them were validated using quantitative real-time PCR. This study provided valuable clues to understanding the mechanisms underlying the hypoxic responses of M. japonicus.


Assuntos
Penaeidae , Animais , Apoptose , Hepatopâncreas , Hipóxia , Imunidade Inata/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA