Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(24): 15888-15897, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38842501

RESUMO

Distinguished from traditional physical unclonable functions (PUFs), optical PUFs derive their encoded information from the optical properties of materials, offering distinct advantages, including solution processability, material versatility, and tunable luminescence performance. However, existing research on optical PUFs has predominantly centered on visible photoluminescence, while advanced optical PUFs based on higher-level covert light remain unexplored. In this study, we present optical PUFs based on the utilization of the covert light of near-infrared circularly polarized luminescence (NIR-CPL). This interesting property is achieved by incorporating Yb-doped metal halide perovskite nanocrystals (Yb-PeNCs) possessing NIR emission property into chiral imprinted photonic (CIP) films. By employing a solvent immersion method, we successfully integrated Yb-PeNCs into these CIP films, thereby creating an optically unclonable surface. The resulting NIR-CPL emission adds a layer of advanced security to the optical PUF systems. These findings underscore the potential of solution-processable chiral films to play a pivotal role in advancing the next generation of PUFs.

2.
Angew Chem Int Ed Engl ; 63(27): e202406524, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38702292

RESUMO

Circularly polarized luminescence (CPL)-active materials are increasingly recognized for their potential applications such as 3D imaging, data storage, and optoelectronic devices. Typically, CPL materials have required high-energy (HE) photons for excitation to emit low-energy (LE) circularly polarized light, a process known as downshifting CPL (DSCPL). However, the emergence of upconverted CPL (UCCPL), where the absorption of multi LE photons results in the emission of a single HE photon with circular polarization, has recently attracted considerable attention. This minireview highlights the intricate relationship between upconversion and CPL phenomena. During upconversion, the dissymmetry factor (glum) value can be improved in certain systems. Additionally, the integration of both LE and HE photons in upconversion-downshifting-synergistic systems offers avenues for dual-excitation or dual-emission CPL functionalities. More in detail, the emerging UCCPL based on various photon upconversion mechanisms and their synergy with DSCPL are introduced. Additionally, several examples that demonstrate the applications of UCCPL are presented to highlight the future opportunities.

3.
Nat Commun ; 15(1): 3798, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714689

RESUMO

Transparent roofs and walls offer a compelling solution for harnessing natural light. However, traditional glass roofs and walls face challenges such as glare, privacy concerns, and overheating issues. In this study, we present a polymer-based micro-photonic multi-functional metamaterial. The metamaterial diffuses 73% of incident sunlight, creating a more comfortable and private indoor environment. The visible spectral transmittance of the metamaterial (95%) surpasses that of traditional glass (91%). Furthermore, the metamaterial is estimated to enhance photosynthesis efficiency by ~9% compared to glass roofs. With a high emissivity (~0.98) close to that of a mid-infrared black body, the metamaterial is estimated to have a cooling capacity of ~97 W/m2 at ambient temperature. The metamaterial was about 6 °C cooler than the ambient temperature in humid Karlsruhe. The metamaterial exhibits superhydrophobic performance with a contact angle of 152°, significantly higher than that of glass (26°), thus potentially having excellent self-cleaning properties.

4.
Angew Chem Int Ed Engl ; 62(50): e202315136, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37902429

RESUMO

The helical twisting tendency of liquid crystals (LCs) is generally governed by the inherent configuration of the chiral emitter. Here, we introduce the multistage inversion of supramolecular chirality as well as circularly polarized luminescence (CPL) by manipulating the ratio of single enantiomeric emitters (R-PCP) to LC monomers (5CB). Increasing the content of R-PCP from 1 wt % to 3 wt % inverted the helix of LCs from left-handed to right-handed, accompanying a CPL sign changed from positive to negative. The biaxiality of chiral emitters, as well as the steric effect of chiral-chiral and chiral-achiral interaction, were identified as the reasons for helical sense inversion. Due to the strong helical twisting power, 4 wt % R-PCP drove the photonic band gap (PBG) of chiral LCs to match up with their emission range, leading to an inversion of the CPL again with a high dissymmetry factor (≈1.2). Directly adjusting the PBG using chiral emitters is seldom achieved in cholesteric LCs. On this basis, an achiral sensitizer PtTPBP was assembled into the helical superstructure. The generation of triplet-triplet annihilation-induced upconverted CPL from R-PCP and the downshifting CPL from PtTPBP with opposite rotation was achieved in a single chiral LC system by tuning the position of the PBG.

5.
Nat Commun ; 14(1): 6123, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777553

RESUMO

Existing circularly polarized luminescence materials can hardly satisfy the requirements of both large luminescence dissymmetry factor and high luminescent quantum yield, which hinders their practical applications. Here, we present a soft photonic crystal film embedded with chiral nanopores that possesses excellent circularly polarized luminescence performance with a high luminescence dissymmetry factor as well as a large luminescent quantum yield when loaded with various luminescent dyes. Benefitting from the retention of chiral nanopores imprinted from a chiral liquid crystal arrangement, the chiral soft photonic crystal film can not only endow dyes with chiral properties, but also effectively avoid severe aggregation of guest dye molecules. More importantly, the soft photonic crystal film can be recycled many times by loading and eluting guest dye molecules while retaining good stability as well as circularly polarized luminescence performance, enabling various applications, including smart windows, multi-color circularly polarized luminescence and anticounterfeiting.

6.
Nat Commun ; 14(1): 81, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604426

RESUMO

The development of circularly polarized luminescence (CPL)-active materials with both large luminescence dissymmetry factor (glum) and high emission efficiency continues to be a major challenge. Here, we present an approach to improve the overall CPL performance by integrating triplet-triplet annihilation-based photon upconversion (TTA-UC) with localized surface plasmon resonance. Dye-loaded chiral micelles possessing TTA-UC ability are designed and attached on the surface of achiral gold nanorods (AuNRs). The longitudinal and transversal resonance peaks of AuNRs overlap with the absorption and emission of dye-loaded chiral micelles, respectively. Typically, 43-fold amplification of glum value accompanied by 3-fold enhancement of upconversion are obtained simultaneously when Au@Ag nanorods are employed in the composites. More importantly, transient absorption spectra reveal a fast accumulation of spin-polarized triplet excitons in the composites. Therefore, the enhancement of chirality-induced spin polarization should be in charge of the amplification of glum value. Our design strategy suggests that combining plasmonic nanomaterials with chiral organic materials could aid in the development of chiroptical nanomaterials.

7.
Chem Commun (Camb) ; 59(5): 567-570, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36533681

RESUMO

Circularly polarized luminescence (CPL)-active light-harvesting systems consisting of a light-responsive donor (R-1), mediator (Nile red), and terminal acceptor (Cyanine 5) are constructed in cholesteric liquid crystals. A dynamically tunable CPL dissymmetry factor and energy transfer modes, are achieved via the closed-ring and open-ring conversion between R-1-O and R-1-C.


Assuntos
Cristais Líquidos , Quinolinas , Transferência de Energia , Luminescência
8.
Front Chem ; 10: 1010857, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386002

RESUMO

The effect of triplet-triplet annihilation (TTA) on the room-temperature phosphorescence (RTP) in metal-organic frameworks (MOFs) is studied in benchmark RTP MOFs based on Zn metal centers and isophthalic or terephthalic acid linkers (ZnIPA and ZnTPA). The ratio of RTP to singlet fluorescence is observed to decrease with increasing excitation power density. Explicitly, in ZnIPA the ratio of the RTP to fluorescence is 0.58 at 1.04 mW cm-2, but only 0.42 at (the still modest) 52.6 mW cm-2. The decrease in ratio is due to the reduction of RTP efficiency at higher excitation due to TTA. The density of triplet states increases at higher excitation power densities, allowing triplets to diffuse far enough during their long lifetime to meet another triplet and annihilate. On the other hand, the shorter-lived singlet species can never meet an annihilate. Therefore, the singlet fluorescence scales linearly with excitation power density whereas the RTP scales sub-linearly. Equivalently, the efficiency of fluorescence is unaffected by excitation power density but the efficiency of RTP is significantly reduced at higher excitation power density due to TTA. Interestingly, in time-resolved measurements, the fraction of fast decay increases but the lifetime of long tail of the RTP remains unaffected by excitation power density. This may be due to the confinement of triplets to individual grains, leading decay to be faster until there is only one triplet per grain left. Subsequently, the remaining "lone triplets" decay with the unchanging rate expressed by the long tail. These results increase the understanding of RTP in MOFs by explicitly showing the importance of TTA in determining the (excitation power density dependent) efficiency of RTP. Also, for applications in optical sensing, these results suggest that a method based on long tail lifetime of the RTP is preferable to a ratiometric approach as the former will not be affected by variation in excitation power density whereas the latter will be.

9.
Nanoscale ; 14(10): 3970, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35229855

RESUMO

Correction for 'Circularly polarized luminescent porous crystalline nanomaterials' by Anyi Zheng et al., Nanoscale, 2022, 14, 1123-1135, DOI: 10.1039/D1NR07069J.

10.
Nanoscale ; 14(4): 1123-1135, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35018958

RESUMO

Circularly polarized luminescence (CPL)-active materials have attracted exclusive attention because of their wide potential applications in low-power-consumption displays, encrypted information storage, chiroptical sensors, and so on. However, there is always a trade-off between the luminescence dissymmetry factor (glum) and luminescence quantum yield, which are two critical parameters. Therefore, developing materials with both large glum values and high luminescence efficiency is a key issue for constructing high-efficiency CPL materials. To date, chiral porous crystalline nanomaterials (PCNMs) including metal-organic frameworks (MOFs), porous organic-cages (POCs), metal-organic cages (MOCs), and supramolecular organic frameworks (SOFs), have shown excellent potential for solving this problem and achieving functional CPL-active materials. In this review, we will summarize several approaches for fabricating CPL-active PCNMs, such as direct synthesis, chirality induction, and symmetry breaking. Furthermore, with flexibly tunable structures and comprehensive host-guest chemistry, modulation and amplification of CPL can be achieved in these PCNMs. We would like to provide insight and perspective that PCNMs can act as an efficient platform in the CPL research field.

11.
J Phys Chem Lett ; 12(35): 8566-8574, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34468160

RESUMO

Chiroptical materials with circularly polarized luminescence (CPL) activity have aroused a lot of interest. One essential factor for evaluating the features of CPL-active materials is the dissymmetry factor (glum), which represents the circular polarization of emitted light. Essentially, for the practical application of CPL, the most important issue is to greatly improve the glum value. Recently, benefiting from the flexible and efficient design in hybrid donor-acceptor systems, more and more examples involving glum value amplification have been reported. In this Perspective, we highlight the proposed mechanism for the generation and amplification of CPL in these hybrid systems. We also present the corresponding design principles and potential pitfalls in experimental processes. We hope that this Perspective can shed light on the development of highly efficient CPL-active materials.

12.
J Am Chem Soc ; 143(33): 13259-13265, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34387996

RESUMO

Research on chiral selection and recognition not only is of fundamental importance in resolving the origin of biological homochirality, but also is instructive in the fabrication of controlled molecular organization in supramolecular systems to modulate their chirality-related functional properties. Here we report an enantioselective assembly process between a chiral energy donor and two enantiomeric energy acceptors, which further results in chirality-controlled energy transfer and enantioselective triplet-triplet annihilation upconversion (TTA-UC). It is found that the chiral energy donor Pd(II) octaethylporphyrin derivative PdOEP-LG12 (RD) can selectively coassemble with the chiral energy acceptor LGAn (RA) with the same chiral scaffold but tends to form segregation with the energy acceptor DGAn (SA) with the opposite chiral scaffold in a thermodynamic equilibrium state. Thus, the coassembly of RA/RD shows more effective triplet-triplet energy transfer (TTET) and stronger upconverted luminescence and upconverted circularly polarized luminescence in comparison to the segregation of SA/RD. The establishment of such an enantioselective TTA-UC system highlights the applications of chirality-regulated triplet fusion in optoelectronic materials.

13.
Adv Mater ; 33(33): e2101797, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34245189

RESUMO

Metal-organic frameworks (MOFs) have attracted tremendous attention for several novel applications. However, functional MOFs with light-responsive circularly polarized luminescence (CPL) are not examined in detail. Therefore, a dual CPL switch exhibiting both upconversion (UC) and downshifting (DS) CPL in the solid state is constructed by loading a luminescent diarylethene derivative (DAEC) and UC nanoparticles (UCNPs) into chiral MOFs. The chiral MOF⊃DAEC composites exhibit both photoswitchable luminescence and DS-CPL properties under alternating UV and visible light irradiation. Additionally, a reversible UC-CPL switch is realized using near-infrared (NIR) and visible light irradiation by introducing energy-level-matched UCNPs and DAEC into the chiral MOFs. The dissymmetry factor (glum ) of UC-CPL is noted to be significantly amplified through energy transfer compared to that of DS-CPL, which indicates that the information on circular polarization can be manipulated by altering the incident light. A chiroptical logic circuit with a 2D information output is designed with UV, visible, and NIR light as inputs by setting a rational threshold.

14.
Acc Chem Res ; 53(7): 1279-1292, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32649172

RESUMO

Chiral functional materials with circularly polarized luminescence (CPL) have risen rapidly in recent years because of their fascinating characteristics and potential applications in various research fields. CPL refers to the differential spontaneous emission of left (L)- and right (R)-handed circularly polarized light upon photon or electron excitation. Generally, an outstanding CPL-active material needs to possess a high luminescence dissymmetry factor (glum) (defined as 2(IL - IR)/(IL + IR) where I is the emission intensity), which is between -2 and +2. Although the exciting development in CPL-active materials was achieved, the modulation of CPL signs is still a challenge. For small organic systems, a relatively small glum value, one of the key parameters of CPL, limits their practical applications. Searching for efficient approaches for amplifying glum is important. Therefore, over the past decades, besides optimizing the structure of small molecules, many other strategies to obtain efficient CPL-active materials have been developed. For instance, self-assembly has been well demonstrated as an effective approach to amplify the supramolecular chirality as well as the glum values. On the other hand, chiral liquid crystals (CLCs), which are capable of selective reflection of left- and right-handed circularly polarized light, also to serve as a host matrix for endowing guest emitters with CPL activity and high glum values. However, self-assembly focuses on modulating the conformation and spatial arrangement of chiral emitters. And the CPL of a luminophore-doped CLC matrix depends on the helix pitch and band gap positions. Lately, novel photophysical approaches to modulate CPL signs have gradually emerged.In this Account, we discuss the recent progress of excited-state-regulation involved CPL-active materials. The emergence, amplification, and inversion of CPL can be adjusted through regulation of the excited state of chiral emitters. For example, Förster resonance energy transfer (FRET) can amplify the glum values of chiral energy acceptors in chiral supramolecular assemblies. By combining the concepts of photon upconversion and CPL, high-energy upconverted circularly polarized emission was achieved under excitation of low-energy light, accompanied by an amplified glum. In addition, the organic systems with unpaired electrons, i.e., charge transfer (CT) system and open-shell π-radical, show favorable CPL properties, which can be flexibly tuned with an applied magnetic field. It should be noted that these photophysical process are associated with the excited state of chiral emitters. So far, while the main focus is on the regulation of the molecular and supramolecular nanostructures, direct regulation of the excited state of the chiral system will serve as a new platform to understand and regulate the CPL activity and will be helpful to develop smart chiroptical materials.

15.
Research (Wash D C) ; 2020: 6452123, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32025662

RESUMO

The general approach for fabricating solid-state materials showing circularly polarized luminescence (CPL) is still in its challenge. In this work, chiral metal-organic frameworks (MOFs) with full-color and white-color circularly polarized light emission are firstly achieved through a host-guest emitter-loading strategy. Chiral zeolitic imidazolate frameworks (ZIFs, a class of MOFs) are fabricated by a facile and simple mixed-ligand coassembly pathway. Meantime, achiral dyes, quantum dots (QDs), and upconversion nanoparticles (UCNPs) are easily loaded into the chiral ZIFs during the synthetic process. Size-matched dyes can be solely encapsulated into the chiral cages of ZIF, resulting in induced CPL and enhanced luminescence efficiency in solid-state ZIF⊃dye composites. Large-sized QDs, after embedding into the gap of the ZIF particles, also exhibited intense CPL activity. Furthermore, through modulating the blending ratio of colored dyes or QDs in chiral ZIFs, white light-emitting ZIFs with circular polarization could be constructed in a solid state. In addition, through loading rare earth element-based upconversion nanoparticles (UCNPs) into chiral ZIFs, upconverted CPL (UC-CPL) could be achieved with a high dissymmetry factor (g lum). Thus, various achiral luminophores were endowed with CPL upon coupling with chiral ZIFs, which significantly deepened and enlarged the research scope of the chiroptical materials in a solid state.

16.
Adv Mater ; 32(41): e1900110, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31394014

RESUMO

Currently, the development of circularly polarized luminescent (CPL) materials has drawn extensive attention due to the numerous potential applications in optical data storage, displays, backlights in 3D displays, and so on. While the fabrication of CPL-active materials generally requires chiral luminescent molecules, the introduction of the "self-assembly" concept offers a new perspective in obtaining the CPL-active materials. Following this approach, various self-assembled materials, including organic-, inorganic-, and hybrid systems can be endowed with CPL properties. Benefiting from the advantages of self-assembly, not only chiral molecules, but also achiral species, as well as inorganic nanoparticles have potential to be self-assembled into chiral nanoassemblies showing CPL activity. In addition, the dissymmetry factor, an important parameter of CPL materials, can be enhanced through various pathways of self-assembly. Here, the present status and progress of self-assembled nanomaterials with CPL activity are reviewed. An overview of the key factors in regulating chiral emission materials at the supramolecular level will largely boost their application in multidisciplinary fields.

17.
J Phys Chem Lett ; 11(1): 311-317, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31854190

RESUMO

A general phenomenon about upconverted circularly polarized luminescence (UC-CPL) based on triplet-triplet annihilation (TTA) was realized in an ambient environment by coupling three kinds of chiral acceptors with corresponding achiral sensitizers. All of the dissymmetry factors of UC-CPL exhibited significant amplification compared with the prompt CPL of the used chiral acceptors. Chirality-induced spin polarization during the TTA-UC process was in charge of the amplified dissymmetry factor of UC-CPL. Chirality-induced spin-polarized triplet excitons will suppress the TTA efficiency because the spin-polarized electrons go against the electron exchange within triplet excitons. However, the chirality-induced spin-polarized singlet excitons resulting from the TTA process can be promoted, enabling a large dissymmetry factor of UC-CPL.

18.
J Phys Chem Lett ; 10(12): 3290-3295, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31146530

RESUMO

Upconverted circularly polarized luminescence (UCPL) processes have attracted great interest, because the chiroptical properties could be expressed in different photophysical processes. In this Letter, the first example of two-photon absorption-based upconverted circularly polarized luminescence (TP-UCPL) is demonstrated. The chiral α-octylamine-modified cesium lead bromides perovskite nanocrystals exhibited TP-UCPL with a two-photon absorption cross section at 800 nm (σ2,800 nm) up to 3.68 × 104 GM and luminescence dissymmetric factor ( glum) up to 7.0 × 10-3. Depending on the molecular chirality of the capping ligands, the TP-UCPL sense can be selected and the mirror-imaged CPL is obtained. It is envisaged that this approach will afford a new viewpoint for designing UCPL processes.

19.
Angew Chem Int Ed Engl ; 58(15): 4978-4982, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30773759

RESUMO

A chiral zeolitic imidazolate framework (ZIF) showing circularly polarized luminescence (CPL) has been successfully constructed by blending binapthyl-derived chiral emitters with ZIF-8 rhombic dodecahedron nanoparticles. This approach solves a major trade-off in CPL-active materials: the large luminescence dissymmetry factor (glum ) always suffers from suppression of luminescence efficiency. Compared to the optical properties of chiral emitters, the obtained chiral ZIF nanomaterials showed an enhanced fluorescence efficiency while the |glum | value is significantly amplified by one order of magnitude. Additionally, enantioselective fluorescence sensing in response to α-hydroxycarboxylic acids has been enhanced in chiral ZIFs. Reorganization and conjunction of chiral emitters to the skeleton of ZIF nanoparticles can greatly improve both the luminescence quantum yield and circularly polarization, which facilitates the design of more efficient chiroptical materials.

20.
Nanoscale Adv ; 1(2): 508-512, 2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36132252

RESUMO

In this study, water-soluble semiconductor quantum dots (QDs) showing induced circularly polarized luminescence (CPL) in an organic-inorganic coassembled hydrogel were demonstrated. Achiral QDs could be encapsulated into a chiral peptide dendron hydrogel through cogelation. These cogels displayed intense induced circularly polarized emission. In addition, the direction of the CPL property of QD cogels could be regulated by the supramolecular chirality of hydrogels. Our findings reveal that the emergence of CPL achiral QDs can be triggered by the chirality transfer in a multiple-component dendron hydrogel system. This study has given a new understanding into the design of functional chiroptical materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA