Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; : 107388, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38763333

RESUMO

As part of the classical renin-angiotensin system, the peptidase angiotensin converting enzyme (ACE) makes angiotensin II which has myriad effects on systemic cardiovascular function, inflammation, and cellular proliferation. Less well known is that macrophages and neutrophils make ACE in response to immune activation which has marked effects on myeloid cell function independent of angiotensin II. Here, we discuss both classical (angiotensin) and non-classical functions of ACE and highlight mice called ACE 10/10 in which genetic manipulation increases ACE expression by macrophages and makes these mice much more resistant to models of tumors, infection, atherosclerosis, and Alzheimer's disease. In another model called NeuACE mice, neutrophils make increased ACE and these mice are much more resistant to infection. In contrast, ACE inhibitors reduce neutrophil killing of bacteria in mice and humans. Increased expression of ACE induces a marked increase in macrophage oxidative metabolism, particularly mitochondrial oxidation of lipids, secondary to increased PPARα expression, and results in increased myeloid cell ATP. ACE present in sperm has a similar metabolic effect and the lack of ACE activity in these cells reduces both sperm motility and fertilization capacity. These non-classical effects of ACE are not due to the actions of angiotensin II but to an unknown molecule, probably a peptide, that triggers a profound change in myeloid cell metabolism and function. Purifying and characterizing this peptide could offer a new treatment for several diseases and prove potentially lucrative.

2.
Nat Immunol ; 24(1): 96-109, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36510022

RESUMO

Immune aging combines cellular defects in adaptive immunity with the activation of pathways causing a low-inflammatory state. Here we examined the influence of age on the kinetic changes in the epigenomic and transcriptional landscape induced by T cell receptor (TCR) stimulation in naive CD4+ T cells. Despite attenuated TCR signaling in older adults, TCR activation accelerated remodeling of the epigenome and induced transcription factor networks favoring effector cell differentiation. We identified increased phosphorylation of STAT5, at least in part due to aberrant IL-2 receptor and lower HELIOS expression, as upstream regulators. Human HELIOS-deficient, naive CD4+ T cells, when transferred into human-synovium-mouse chimeras, infiltrated tissues more efficiently. Inhibition of IL-2 or STAT5 activity in T cell responses of older adults restored the epigenetic response pattern to the one seen in young adults. In summary, reduced HELIOS expression in non-regulatory naive CD4+ T cells in older adults directs T cell fate decisions toward inflammatory effector cells that infiltrate tissue.


Assuntos
Envelhecimento , Linfócitos T CD4-Positivos , Fator de Transcrição Ikaros , Idoso , Animais , Humanos , Camundongos , Adulto Jovem , Envelhecimento/imunologia , Envelhecimento/patologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Montagem e Desmontagem da Cromatina , Ativação Linfocitária , Receptores de Antígenos de Linfócitos T , Fator de Transcrição STAT5 , Fator de Transcrição Ikaros/metabolismo
3.
Front Aging ; 3: 867950, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35821833

RESUMO

The aging process causes profound restructuring of the host immune system, typically associated with declining host protection against cancer and infection. In the case of T cells, aging leads to the accumulation of a diverse set of T-cell aging-associated phenotypes (TASP), some of which have been implicated in driving tissue inflammation in autoimmune diseases. T cell aging as a risk determinant for autoimmunity is exemplified in two classical autoimmune conditions: rheumatoid arthritis (RA), a disease predominantly affecting postmenopausal women, and giant cell arteritis (GCA), an inflammatory vasculopathy exclusively occurring during the 6th-9th decade of life. Pathogenic T cells in RA emerge as a consequence of premature immune aging. They have shortening and fragility of telomeric DNA ends and instability of mitochondrial DNA. As a result, they produce a distinct profile of metabolites, disproportionally expand their endoplasmic reticulum (ER) membranes and release excess amounts of pro-inflammatory effector cytokines. Characteristically, they are tissue invasive, activate the inflammasome and die a pyroptotic death. Patients with GCA expand pathogenic CD4+ T cells due to aberrant expression of the co-stimulatory receptor NOTCH1 and the failure of the PD-1/PD-L1 immune checkpoint. In addition, GCA patients lose anti-inflammatory Treg cells, promoting tissue-destructive granulomatous vasculitis. In summary, emerging data identify T cell aging as a risk factor for autoimmune disease and directly link TASPs to the breakdown of T cell tolerance and T-cell-induced tissue inflammation.

4.
Nat Metab ; 4(6): 759-774, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35739396

RESUMO

Tissue macrophages (Mϕ) are essential effector cells in rheumatoid arthritis (RA), contributing to autoimmune tissue inflammation through diverse effector functions. Their arthritogenic potential depends on their proficiency to survive in the glucose-depleted environment of the inflamed joint. Here, we identify a mechanism that links metabolic adaptation to nutrient stress with the efficacy of tissue Mϕ to activate adaptive immunity by presenting antigen to tissue-invading T cells. Specifically, Mϕ populating the rheumatoid joint produce and respond to the small cytokine CCL18, which protects against cell death induced by glucose withdrawal. Mechanistically, CCL18 induces the transcription factor RFX5 that selectively upregulates glutamate dehydrogenase 1 (GLUD1), thus enabling glutamate utilization to support energy production. In parallel, RFX5 enhances surface expression of HLA-DR molecules, promoting Mϕ-dependent expansion of antigen-specific T cells. These data place CCL18 at the top of a RFX5-GLUD1 survival pathway and couple adaptability to nutrient conditions in the tissue environment to antigen-presenting function in autoimmune tissue inflammation.


Assuntos
Macrófagos , Fatores de Transcrição , Glucose , Humanos , Inflamação , Nutrientes , Fatores de Transcrição de Fator Regulador X
5.
Nat Cardiovasc Res ; 1(7): 634-648, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36860353

RESUMO

Pre-existent cardiovascular disease is a risk factor for weak anti-viral immunity, but underlying mechanisms remain undefined. Here, we report that patients with coronary artery disease (CAD) have macrophages (Mϕ) that actively suppress the induction of helper T cells reactive to two viral antigens: the SARS-CoV2 Spike protein and the Epstein-Barr virus (EBV) glycoprotein 350. CAD Mϕ overexpressed the methyltransferase METTL3, promoting the accumulation of N6-methyladenosine (m6A) in Poliovirus receptor (CD155) mRNA. m6A modifications of positions 1635 and 3103 in the 3'UTR of CD155 mRNA stabilized the transcript and enhanced CD155 surface expression. As a result, the patients' Mϕ abundantly expressed the immunoinhibitory ligand CD155 and delivered negative signals to CD4+ T cells expressing CD96 and/or TIGIT receptors. Compromised antigen-presenting function of METTL3hi CD155hi Mϕ diminished anti-viral T cell responses in vitro and in vivo. LDL and its oxidized form induced the immunosuppressive Mϕ phenotype. Undifferentiated CAD monocytes had hypermethylated CD155 mRNA, implicating post-transcriptional RNA modifications in the bone-marrow in shaping anti-viral immunity in CAD.

6.
Nat Immunol ; 22(12): 1551-1562, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34811544

RESUMO

Misdirected immunity gives rise to the autoimmune tissue inflammation of rheumatoid arthritis, in which excess production of the cytokine tumor necrosis factor (TNF) is a central pathogenic event. Mechanisms underlying the breakdown of self-tolerance are unclear, but T cells in the arthritic joint have a distinctive metabolic signature of ATPlo acetyl-CoAhi proinflammatory effector cells. Here we show that a deficiency in the production of mitochondrial aspartate is an important abnormality in these autoimmune T cells. Shortage of mitochondrial aspartate disrupted the regeneration of the metabolic cofactor nicotinamide adenine dinucleotide, causing ADP deribosylation of the endoplasmic reticulum (ER) sensor GRP78/BiP. As a result, ribosome-rich ER membranes expanded, promoting co-translational translocation and enhanced biogenesis of transmembrane TNF. ERrich T cells were the predominant TNF producers in the arthritic joint. Transfer of intact mitochondria into T cells, as well as supplementation of exogenous aspartate, rescued the mitochondria-instructed expansion of ER membranes and suppressed TNF release and rheumatoid tissue inflammation.


Assuntos
Artrite Reumatoide/metabolismo , Ácido Aspártico/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Mitocôndrias/metabolismo , Membrana Sinovial/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , ADP-Ribosilação , Transferência Adotiva , Animais , Artrite Reumatoide/genética , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Autoimunidade , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/transplante , Linfócitos T CD4-Positivos/ultraestrutura , Estudos de Casos e Controles , Células Cultivadas , Retículo Endoplasmático/imunologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Chaperona BiP do Retículo Endoplasmático/metabolismo , Feminino , Humanos , Masculino , Camundongos , Mitocôndrias/imunologia , Mitocôndrias/transplante , Mitocôndrias/ultraestrutura , Membrana Sinovial/imunologia , Membrana Sinovial/ultraestrutura , Fator de Necrose Tumoral alfa/genética
7.
Cell Metab ; 32(6): 967-980.e5, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33264602

RESUMO

Autoimmune T cells in rheumatoid arthritis (RA) have a defect in mitochondrial oxygen consumption and ATP production. Here, we identified suppression of the GDP-forming ß subunit of succinate-CoA ligase (SUCLG2) as an underlying abnormality. SUCLG2-deficient T cells reverted the tricarboxylic acid (TCA) cycle from the oxidative to the reductive direction, accumulated α-ketoglutarate, citrate, and acetyl-CoA (AcCoA), and differentiated into pro-inflammatory effector cells. In AcCoAhi RA T cells, tubulin acetylation stabilized the microtubule cytoskeleton and positioned mitochondria in a perinuclear location, resulting in cellular polarization, uropod formation, T cell migration, and tissue invasion. In the tissue, SUCLG2-deficient T cells functioned as cytokine-producing effector cells and were hyperinflammatory, a defect correctable by replenishing the enzyme. Preventing T cell tubulin acetylation by tubulin acetyltransferase knockdown was sufficient to inhibit synovitis. These data link mitochondrial failure and AcCoA oversupply to autoimmune tissue inflammation.


Assuntos
Artrite Reumatoide/imunologia , Succinato-CoA Ligases/imunologia , Linfócitos T/imunologia , Acetilcoenzima A/imunologia , Adulto , Idoso , Animais , Citocinas/imunologia , Feminino , Humanos , Masculino , Camundongos , Microtúbulos/imunologia , Pessoa de Meia-Idade , Linfócitos T/citologia
8.
Sci Immunol ; 4(36)2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31253642

RESUMO

The cause of most hypertensive disease is unclear, but inflammation appears critical in disease progression. However, how elevated blood pressure initiates inflammation is unknown, as are the effects of high blood pressure on innate and adaptive immune responses. We now report that hypertensive mice have increased T cell responses to antigenic challenge and develop more severe T cell-mediated immunopathology. A root cause for this is hypertension-induced erythrocyte adenosine 5'-triphosphate (ATP) release, leading to an increase in plasma ATP levels, which begins soon after the onset of hypertension and stimulates P2X7 receptors on antigen-presenting cells (APCs), increasing APC expression of CD86. Hydrolyzing ATP or blocking the P2X7 receptor eliminated hypertension-induced T cell hyperactivation. In addition, pharmacologic or genetic blockade of P2X7 receptor activity suppressed the progression of hypertension. Consistent with the results in mice, we also found that untreated human hypertensive patients have significantly elevated plasma ATP levels compared with treated hypertensive patients or normotensive controls. Thus, a hypertension-induced increase in extracellular ATP triggers augmented APC and T cell function and contributes to the immune-mediated pathologic changes associated with hypertensive disease.


Assuntos
Trifosfato de Adenosina/imunologia , Hipertensão/imunologia , Trifosfato de Adenosina/sangue , Adulto , Idoso , Animais , Antígenos/imunologia , Antígeno B7-2/imunologia , Células Dendríticas/imunologia , Diabetes Mellitus Tipo 1/imunologia , Feminino , Hepatite/imunologia , Humanos , Hipertensão/sangue , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Ovalbumina/imunologia , Receptores Purinérgicos P2X7/genética , Linfócitos T/imunologia
9.
Br J Pharmacol ; 175(22): 4239-4252, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30153328

RESUMO

BACKGROUND AND PURPOSE: Angiotensin-converting enzyme (ACE), an important part of the renin-angiotensin system, is implicated in stimulating the fibrotic processes in the heart, lung, liver and kidney, while an ACE inhibitor (ACEI) promotes physiological tissue repair in these organs. The mechanism is closely related to TGF-ß1 pathways. However, the reported effects of applying ACEIs during scar formation are unclear. Hence, we explored the anti-fibrotic effects of an ACEI and the molecular mechanisms involved in a mouse scar model. EXPERIMENTAL APPROACH: After a full-thickness skin wound operation, ACE wild-type mice were randomly assigned to receive either ramipril, losartan or hydralazine p.o. ACE knockout (KO) mice and negative control mice only received vehicle (water). Wound/scar widths during wound healing and histological examinations were recorded at the final day. The ability of ACEI to reduce fibrosis via TGF-ß1 signalling was evaluated in vitro and in vivo. KEY RESULTS: ACE KO mice and mice that received ramipril showed narrower wound/scar width, reduced fibroblast proliferation, decreased collagen and TGF-ß1 expression. ACEI attenuated the phosphorylation of small mothers against decapentaplegic (Smad2/3) and TGF-ß-activated kinase 1 (TAK1) both in vitro and in vivo. The expression of ACE-related peptides varied in murine models with different drug treatments. CONCLUSIONS AND IMPLICATIONS: ACEI showed anti-fibrotic properties in scar formation by mediating downstream peptides to suppress TGF-ß1/Smad and TGF-ß1/TAK1 pathways. These findings suggest that dual inhibition of Smad and TAK1 signalling by ACEI is a useful strategy for the development of new anti-fibrotic agents.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/farmacologia , MAP Quinase Quinase Quinases/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/antagonistas & inibidores , Animais , Modelos Animais de Doenças , MAP Quinase Quinase Quinases/deficiência , MAP Quinase Quinase Quinases/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteínas Smad/metabolismo
10.
Am J Physiol Renal Physiol ; 314(4): F531-F542, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29187372

RESUMO

Diabetic nephropathy is a major cause of end-stage renal disease in developed countries. While angiotensin-converting enzyme (ACE) inhibitors are used to treat diabetic nephropathy, how intrarenal ACE contributes to diabetic renal injury is uncertain. Here, two mouse models with different patterns of renal ACE expression were studied to determine the specific contribution of tubular vs. glomerular ACE to early diabetic nephropathy: it-ACE mice, which make endothelial ACE but lack ACE expression by renal tubular epithelium, and ACE 3/9 mice, which lack endothelial ACE and only express renal ACE in tubular epithelial cells. The absence of endothelial ACE normalized the glomerular filtration rate and endothelial injury in diabetic ACE 3/9 mice. However, these mice developed tubular injury and albuminuria and displayed low renal levels of megalin that were similar to those observed in diabetic wild-type mice. In diabetic it-ACE mice, despite hyperfiltration, the absence of renal tubular ACE greatly reduced tubulointerstitial injury and albuminuria and increased renal megalin expression compared with diabetic wild-type and diabetic ACE 3/9 mice. These findings demonstrate that endothelial ACE is a central regulator of the glomerular filtration rate while tubular ACE is a key player in the development of tubular injury and albuminuria. These data suggest that tubular injury, rather than hyperfiltration, is the main cause of microalbuminuria in early diabetic nephropathy.


Assuntos
Albuminúria/enzimologia , Diabetes Mellitus Experimental/enzimologia , Nefropatias Diabéticas/enzimologia , Túbulos Renais/enzimologia , Peptidil Dipeptidase A/metabolismo , Albuminúria/genética , Albuminúria/patologia , Albuminúria/fisiopatologia , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/genética , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/fisiopatologia , Células Endoteliais/enzimologia , Taxa de Filtração Glomerular , Glomérulos Renais/enzimologia , Glomérulos Renais/fisiopatologia , Túbulos Renais/patologia , Túbulos Renais/fisiopatologia , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos Knockout , Peptidil Dipeptidase A/deficiência , Peptidil Dipeptidase A/genética , RNA Interferente Pequeno/genética , Estreptozocina
11.
Stroke ; 48(9): 2557-2564, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28698257

RESUMO

BACKGROUND AND PURPOSE: Hypertension is the major risk factor for stroke. Recent work unveiled that hypertension is associated with chronic neuroinflammation; microglia are the major players in neuroinflammation, and the activated microglia elevate sympathetic nerve activity and blood pressure. This study is to understand how brain homeostasis is kept from hypertensive disturbance and microglial activation at the onset of hypertension. METHODS: Hypertension was induced by subcutaneous delivery of angiotensin II, and blood pressure was monitored in conscious animals. Microglial activity was analyzed by flow cytometry and immunohistochemistry. Antibody, pharmacological chemical, and recombinant cytokine were administered to the brain through intracerebroventricular infusion. Microglial depletion was performed by intracerebroventricular delivering diphtheria toxin to CD11b-diphtheria toxin receptor mice. Gene expression profile in sympathetic controlling nucleus was analyzed by customized qRT-PCR array. RESULTS: Transforming growth factor-ß (TGF-ß) is constitutively expressed in the brains of normotensive mice. Removal of TGF-ß or blocking its signaling before hypertension induction accelerated hypertension progression, whereas supplementation of TGF-ß1 substantially suppressed neuroinflammation, kidney norepinephrine level, and blood pressure. By means of microglial depletion and adoptive transfer, we showed that the effects of TGF-ß on hypertension are mediated through microglia. In contrast to the activated microglia in established hypertension, the resting microglia are immunosuppressive and important in maintaining neural homeostasis at the onset of hypertension. Further, we profiled the signature molecules of neuroinflammation and neuroplasticity associated with hypertension and TGF-ß by qRT-PCR array. CONCLUSIONS: Our results identify that TGF-ß-modulated microglia are critical to keeping brain homeostasis responding to hypertensive disturbance.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Hipertensão/imunologia , Microglia/efeitos dos fármacos , Fator de Crescimento Transformador beta1/farmacologia , Transferência Adotiva , Angiotensina II/toxicidade , Animais , Pressão Sanguínea/imunologia , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Antígeno CD11b , Toxina Diftérica , Citometria de Fluxo , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Hipertensão/induzido quimicamente , Hipertensão/genética , Hipertensão/fisiopatologia , Imuno-Histoquímica , Rim/efeitos dos fármacos , Rim/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/imunologia , Norepinefrina/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Sistema Nervoso Simpático , Transcriptoma , Fator de Crescimento Transformador beta1/imunologia , Vasoconstritores/toxicidade
12.
Blood ; 130(3): 328-339, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28515091

RESUMO

Angiotensin-converting enzyme (ACE) inhibitors are widely used to reduce blood pressure. Here, we examined if an ACE is important for the antibacterial effectiveness of neutrophils. ACE knockout mice or mice treated with an ACE inhibitor were more susceptible to bacterial infection by methicillin-resistant Staphylococcus aureus (MRSA). In contrast, mice overexpressing ACE in neutrophils (NeuACE mice) have increased resistance to MRSA and better in vitro killing of MRSA, Pseudomonas aeruginosa, and Klebsiella pneumoniae ACE overexpression increased neutrophil production of reactive oxygen species (ROS) following MRSA challenge, an effect independent of the angiotensin II AT1 receptor. Specifically, as compared with wild-type (WT) mice, there was a marked increase of superoxide generation (>twofold, P < .0005) in NeuACE neutrophils following infection, whereas ACE knockout neutrophils decreased superoxide production. Analysis of membrane p47-phox and p67-phox indicates that ACE increases reduced NAD phosphate oxidase activity but does not increase expression of these subunits. Increased ROS generation mediates the enhanced bacterial resistance of NeuACE mice because the enhanced resistance is lost with DPI (an inhibitor of ROS production by flavoenzymes) inhibition. NeuACE granulocytes also have increased neutrophil extracellular trap formation and interleukin-1ß release in response to MRSA. In a mouse model of chemotherapy-induced neutrophil depletion, transfusion of ACE-overexpressing neutrophils was superior to WT neutrophils in treating MRSA infection. These data indicate a previously unknown function of ACE in neutrophil antibacterial defenses and suggest caution in the treatment of certain individuals with ACE inhibitors. ACE overexpression in neutrophils may be useful in boosting the immune response to antibiotic-resistant bacterial infection.


Assuntos
Resistência à Doença/genética , Imunidade Inata , Neutrófilos/imunologia , Peptidil Dipeptidase A/imunologia , Infecções Estafilocócicas/imunologia , Superóxidos/imunologia , Animais , Membrana Celular , Armadilhas Extracelulares/imunologia , Feminino , Regulação da Expressão Gênica , Humanos , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Klebsiella pneumoniae , Masculino , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Staphylococcus aureus Resistente à Meticilina/imunologia , Camundongos , Camundongos Knockout , NADPH Oxidases/genética , NADPH Oxidases/imunologia , Neutrófilos/citologia , Neutrófilos/transplante , Peptidil Dipeptidase A/deficiência , Peptidil Dipeptidase A/genética , Fosfoproteínas/genética , Fosfoproteínas/imunologia , Pseudomonas aeruginosa , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/imunologia , Transdução de Sinais , Infecções Estafilocócicas/enzimologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/prevenção & controle , Superóxidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA