Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 89(3): 1956-1966, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38268404

RESUMO

A general and practical methodology for the regio- and stereoselective synthesis of multifunctional tetrasubstituted allylic amines and azides based on iodoamination of ferrocene-containing allenylphosphonates with anilines and sodium azide is described. A tetrasubstituted olefin moiety, as well as an iodine atom, a phosphonate, and a ferrocene group, are installed to the allylic amine motif simultaneously in moderate to good yields.

2.
Micromachines (Basel) ; 14(11)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38004967

RESUMO

Femtosecond laser drilling is extensively used to create film-cooling holes in aero-engine turbine blade processing. Investigating and exploring the impact of laser processing parameters on achieving high-quality holes is crucial. The traditional trial-and-error approach, which relies on experiments, is time-consuming and has limited optimization capabilities for drilling holes. To address this issue, this paper proposes a process design method using machine learning and a genetic algorithm. A dataset of percussion drilling using a femtosecond laser was primarily established to train the models. An optimal method for building a prediction model was determined by comparing and analyzing different machine learning algorithms. Subsequently, the Gaussian support vector regression model and genetic algorithm were combined to optimize the taper and material removal rate within and outside the original data ranges. Ultimately, comprehensive optimization of drilling quality and efficiency was achieved relative to the original data. The proposed framework in this study offers a highly efficient and cost-effective solution for optimizing the femtosecond laser percussion drilling process.

3.
Environ Sci Pollut Res Int ; 29(54): 81112-81129, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36201076

RESUMO

For thousands of years, plant has been widely applied in the medical area and is an important part of human diet. A high content of nutrients could be found in all kinds of plants, and the most outstanding group of nutrients that attracts scientists' attention is the high level of phenolic compounds. Due to the relationship between high phenolic compound content and high antioxidant capacity, plant extracts are expected to become a potential treatment for oxidation stress diseases including diabetes and cancer. However, according to the instability of phenolic compounds to light and oxygen, there are certain difficulties in the extraction of such compounds. But after many years of development, the extraction technology of phenolic compounds has been quite stable, and the only problem is how to obtain high-quality extracts with high efficiency. To further enhance the value of plant extracts, concentration and separation methods are often applied, and when detailed analysis is required, characterization methods including HPLC and LC/GC-MS will be applied to evaluate the number and type of phenolic compounds. A series of antioxidant assays are widely performed in numerous studies to test the antioxidant capacity of the plant extracts, which is also an important basis for evaluating value of extracts. This paper intends to provide a view of a variety of methods used in plants' phenolic compound extraction, separation, and characterization. Furthermore, this review presents the advantages and disadvantages of techniques involved in phenolic compound research and provides selected representative bibliographic examples.


Assuntos
Antioxidantes , Fenóis , Humanos , Antioxidantes/análise , Fenóis/análise , Extratos Vegetais , Cromatografia Líquida de Alta Pressão , Oxigênio/análise
4.
ACS Omega ; 7(17): 14630-14642, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35557671

RESUMO

Edible lotus (Nelumbo nucifera G.) is widely consumed in Asian countries and treated as a functional food and traditional medicinal herb due to its abundant bioactive compounds. Lotus rhizome peels, rhizome knots, and seed embryos are important byproducts and processing waste of edible lotus (Nelumbo nucifera G.) with commercial significance. Nevertheless, the comprehensive phenolic profiling of different parts of lotus is still scarce. Thus, this study aimed to review the phenolic contents and antioxidant potential in lotus seeds (embryo and cotyledon) and rhizomes (peel, knot, and pulp) grown in Australia. In the phenolic content and antioxidant potential estimation assays by comparing to the corresponding reference standards, the lotus seed embryo exhibited the highest total phenolic content (10.77 ± 0.66 mg GAE/gf.w.), total flavonoid content (1.61 ± 0.03 mg QE/gf.w.), 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity (9.66 ± 0.10 mg AAE/gf.w.), 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) scavenging activity (14.35 ± 0.20 mg AAE/gf.w.), and total antioxidant capacity (6.46 ± 0.30 mg AAE/g), while the highest value of ferric ion reducing antioxidant power (FRAP) activity and total tannin content was present in the lotus rhizome knot (2.30 ± 0.13 mg AAE/gf.w.). A total of 86 phenolic compounds were identified in five parts of lotus by liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS/MS), including phenolic acids (20), flavonoids (51), lignans (3), stilbenes (2), and other polyphenols (10). The most phenolic compounds, reaching up to 68%, were present in the lotus seed embryo (59). Furthermore, the lotus rhizome peel and lotus seed embryo exhibit significantly higher contents of selected polyphenols than other lotus parts according to high-performance liquid chromatography (HPLC) quantification analysis. The results highlighted that byproducts and processing waste of edible lotus are rich sources of phenolic compounds, which may be good candidates for further exploitation and utilization in food, animal feeding, and pharmaceutical industries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA