Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.196
Filtrar
1.
Curr Med Sci ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990448

RESUMO

OBJECTIVE: To determine the factors that contribute to the survival of elderly individuals diagnosed with brain glioma and develop a prognostic nomogram. METHODS: Data from elderly individuals (age ≥65 years) histologically diagnosed with brain glioma were sourced from the Surveillance, Epidemiology, and End Results (SEER) database. The dataset was randomly divided into a training cohort and an internal validation cohort at a 6:4 ratio. Additionally, data obtained from Tangdu Hospital constituted an external validation cohort for the study. The identification of independent prognostic factors was achieved through the least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analysis, enabling the construction of a nomogram. Model performance was evaluated using C-index, ROC curves, calibration plot and decision curve analysis (DCA). RESULTS: A cohort of 20 483 elderly glioma patients was selected from the SEER database. Five prognostic factors (age, marital status, histological type, stage, and treatment) were found to significantly impact overall survival (OS) and cancer-specific survival (CSS), with tumor location emerging as a sixth variable independently linked to CSS. Subsequently, nomogram models were developed to predict the probabilities of survival at 6, 12, and 24 months. The assessment findings from the validation queue indicate a that the model exhibited strong performance. CONCLUSION: Our nomograms serve as valuable prognostic tools for assessing the survival probability of elderly glioma patients. They can potentially assist in risk stratification and clinical decision-making.

2.
World J Pediatr ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951456

RESUMO

BACKGROUND: Moyamoya disease (MMD) is a significant cause of childhood stroke and transient ischemic attacks (TIAs). This study aimed to assess the safety and efficacy of remote ischemic conditioning (RIC) in children with MMD. METHODS: In a single-center pilot study, 46 MMD patients aged 4 to 14 years, with no history of reconstructive surgery, were randomly assigned to receive either RIC or sham RIC treatment twice daily for a year. The primary outcome measured was the cumulative incidence of major adverse cerebrovascular events (MACEs). Secondary outcomes included ischemic stroke, recurrent TIA, hemorrhagic stroke, revascularization rates, and clinical improvement assessed using the patient global impression of change (PGIC) scale during follow-up. RIC-related adverse events were also recorded, and cerebral hemodynamics were evaluated using transcranial Doppler. RESULTS: All 46 patients completed the final follow-up (23 each in the RIC and sham RIC groups). No severe adverse events associated with RIC were observed. Kaplan-Meier analysis indicated a significant reduction in MACEs frequency after RIC treatment [log-rank test (Mantel-Cox), P = 0.021]. At 3-year follow-up, two (4.35%) patients had an ischemic stroke, four (8.70%) experienced TIAs, and two (4.35%) underwent revascularization as the qualifying MACEs. The clinical improvement rate in the RIC group was higher than the sham RIC group on the PGIC scale (65.2% vs. 26.1%, P < 0.01). No statistical difference in cerebral hemodynamics post-treatment was observed. CONCLUSIONS: RIC is a safe and effective adjunct therapy for asymptomatic children with MMD. This was largely due to the reduced incidence of ischemic cerebrovascular events.

3.
Angew Chem Int Ed Engl ; : e202412283, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39011879

RESUMO

Circularly polarized electroluminescence (CPEL) is highly promising in realm of 3D display and optical data storage. However, designing a groundbreaking chiral material with high comprehensive CPEL performance remains a formidable challenge. In this work, a pair of chiral polymers with self-assembled behavior is designed by integrating a chiral BN-moiety into polyfluorene backbone, named R-PBN and S-PBN, respectively. The chiral polymers show narrowband emission centered at 490 nm with full-width half maximum (FWHM) of 29 nm and high photoluminescence quantum yield (PLQY) of 79%. After thermal annealing treatment, the chiral polymers undergo self-assembly, exhibiting amplified circularly polarized luminescence (CPL) with asymmetry factor (|glum|) of up to 0.11. Moreover, the solution-processed nondoped CP-OLEDs based on the chiral polymers as emitting layers exhibit maximum external quantum efficiency (EQEmax) of 9.8%, intense CPEL activities with |gEL| of up to 0.07, and small FWHM of 36 nm, simultaneously. This represents the first case of self-assembled chiral polymers that combines high EQE, large gEL value and narrowband emission.

4.
Acta Psychol (Amst) ; 248: 104334, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38964044

RESUMO

This study purports to investigate the effects of cue and instructor demonstration on Chinese as a second language (CSL) beginners' Chinese character learning performance, cognitive load, learning motivation and attitude. In the current research, 100 CSL beginners were randomly assigned to four experimental groups, i.e., instructor demonstration cued character, instructor demonstration non-cued character, non-instructor demonstration cued character and non-instructor demonstration non-cued character. Participants were instructed to watch an instructional video and subsequently complete a post-test and a questionnaire. The results show that (1) in the presence of instructor demonstration, the cued characters can noticeably reduce CSL beginners' cognitive load and enhance their learning attitudes towards character learning, enabling them to achieve better performance in character stroke but not in radical and structure, and (2) in the presence of cued characters, the instructor demonstration can noticeably reduce CSL beginners' cognitive load and increase their learning motivation and attitudes towards character learning but can not improve their character learning performance. The findings have significant implications for educators and instructional designers of Chinese and other non-alphabetic languages, such as Kanji and Hangul.

5.
Front Pharmacol ; 15: 1365639, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39021837

RESUMO

Sepsis is a complex syndrome characterized by multi-organ dysfunction, due to the presence of harmful microorganisms in blood which could cause mortality. Complications associated with sepsis involve multiple organ dysfunction. The pathogenesis of sepsis remains intricate, with limited treatment options and high mortality rates. Traditional Chinese medicine (TCM) has consistently demonstrated to have a potential on various disease management. Its complements include reduction of oxidative stress, inhibiting inflammatory pathways, regulating immune responses, and improving microcirculation. Traditional Chinese medicine can mitigate or even treat sepsis in a human system. This review examines progress on the use of TCM extracts for treating sepsis through different pharmacological action and its mechanisms. The potential targets of TCM extracts and active ingredients for the treatment of sepsis and its complications have been elucidated through molecular biology research, network pharmacology prediction, molecular docking analysis, and visualization analysis. Our aim is to provide a theoretical basis and empirical support for utilizing TCM in the treatment of sepsis and its complications while also serving as a reference for future research and development of sepsis drugs.

6.
Quant Imaging Med Surg ; 14(7): 4450-4463, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39022225

RESUMO

Background: Cancer-associated fibroblasts (CAFs) within the tumor microenvironment (TME) can interact with tumor parenchymal cells to promote tumor growth and migration. Fibroblast activation protein (FAP) expressed by CAFs can be targeted with positron emission tomography (PET) tracers, but studies on FAP expression patterns in intracranial tumors remain scarce. We aimed to evaluate FAP expression patterns in intracranial tumors with gallium-68 FAP inhibitor-04 (68Ga-FAPi-04) and immunohistochemical staining and to observe the interactions between CAFs and tumor cells with a head-to-head comparison of 68Ga-FAPi-04 and fluoride-18 fluoroethyl-L-tyrosine (18F-FET) for PET quantification analysis. Methods: We prospectively enrolled 22 adult patients with intracranial mass lesions. 68Ga-FAPi-04 and 18F-FET PET-computed tomography (PET/CT) brain imaging were applied before surgery. Maximal tumor-to-brain ratio (TBRmax), metabolic tumor volume (MTV), and total lesion tracer uptake (TLU) was obtained, and different thresholds were used for 68Ga-FAPi-04-positive lesion delineation owing to the lack of relevant guidelines. The MTV and TLU ratios of both tracers were calculated. Linear regression was applied to observe the differential efficacy of semiquantitative PET parameters. Results: A total of 22 patients with a mean age of 50±13 years (range, 27-69 years) were enrolled. Heterogeneous patterns of 68Ga-FAPi-04 uptake [median of maximal standardized uptake value (SUVmax) =3.8; range, 0.1-19.1] were found. More malignant tumors, including brain metastasis, glioblastoma, and medulloblastoma, generally exhibited more significant 68Ga-FAPi-04 uptake than did the less malignant tumors, while the SUVmax and TBRmax exhibited nonsignificant differences across three intracranial lesion groups of primary brain tumor, brain metastasis, and noncancerous disease (SUVmax: P=0.092; TBRmax: P=0.189). Immunohistochemistry staining showed different stromal FAP expression status in various intracranial lesions. In 15 patients with positive 68Ga-FAPi-04 intracranial tumor uptake, the MTVFAPi:MTVFET ratio had differential efficacy in various types of intracranial tumors [95% confidence interval (CI): 0.572-7.712; P=0.027], and further quantification analyses confirmed the differential ability of the MTVFAPi:MTVFET ratio (95% CI: -0.045 to 11.013, P=0.052; 95% CI: 0.044-17.903, P=0.049; 95% CI: -1.131 to 30.596, P=0.065) with different isocontour volumetric thresholds. Conclusions: This head-to-head study demonstrated heterogeneous FAP expression in intracranial tumors. The FAP expression volume percentage in tumor parenchyma may therefore offer benefit with respect to differentiating between intracranial tumor types.

7.
Microbiol Res ; 286: 127829, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39018940

RESUMO

The impact of climate warming on soil microbes has been well documented, with studies revealing its effects on diversity, community structure and network dynamics. However, the consistency of soil microbial community assembly, particularly in response to diverse plant root exudates under varying temperature conditions, remains an unresolved issue. To address this issue, we employed a growth chamber to integrate temperature and root exudates in a controlled experiment to examine the response of soil bacteria, fungi, and protists. Our findings revealed that temperature independently regulated microbial diversity, with distinct patterns observed among bacteria, fungi, and protists. Both root exudates and temperature significantly influenced microbial community composition, yet interpretations of these factors varied among prokaryotes and eukaryotes. In addition to phototrophic bacteria and protists, as well as protistan consumers, root exudates determined to varying degrees the enrichment of other microbial functional guilds at specific temperatures. The effects of temperature and root exudates on microbial co-occurrence patterns were interdependent; root exudates primarily simplified the network at low and high temperatures, while responses to temperature varied between single and mixed exudate treatments. Moreover, temperature altered the composition of keystone species within the microbial network, while root exudates led to a decrease in their number. These results emphasize the substantial impact of plant root exudates on soil microbial community responses to temperature, underscoring the necessity for future climate change research to incorporate additional environmental variables.

8.
Huan Jing Ke Xue ; 45(7): 4279-4292, 2024 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-39022973

RESUMO

Microbial fertilizers have the characteristics of high efficiency and environmental protection in improving saline soils, and the application of functional microbial fertilizers is of great significance for the green abatement of saline barriers and the improvement of soil quality in coastal areas. The experiment was based on moderately saline soil in the coastal area of Hebei Province, with corn as the indicator crop, on the basis of conventional chemical fertilizer application. Different microbial fertilizer treatments, namely, T1 (conventional chemical fertilizer 750 kg·hm-2 + compound microbial agent 75 kg·hm-2), T2 (conventional chemical fertilizer 750 kg·hm-2 + Bacillus megaterium 300 kg·hm-2), T3 (conventional chemical fertilizer 750 kg·hm-2 + B. mucilaginosus 300 kg·hm-2), T4 (conventional chemical fertilizer 750 kg·hm-2 + organic silicon fertilizer 600 kg·hm-2), T5 (conventional chemical fertilizer 750 kg·hm-2 + bio-organic fertilizer 600 kg·hm-2), T6 (conventional fertilizer 750 kg·hm-2 + active microalgae 15 kg·hm-2), and CK (only fertilizer 750 kg·hm-2), were used for these seven treatments, to study the effects of different microbial fertilizers on soil nutrients, salinity, bacterial community, and corn yield and economic efficiency during two critical periods (V12 stage and maturity stage) of corn. The results showed that compared with that in CK, T1 significantly increased soil total nitrogen (TN) and available phosphorus (AP) contents during the whole growth period. Over the whole reproductive period, soil organic matter (OM) at maturity increased by 10.35% over the V12 stage compared to that in CK, but there was no significant difference between treatments. Compared with that in CK, T5 and T6 significantly reduced soil total salinity and Ca2+ content during the whole growth period by an average of 14.51%-18.48% and 24.25%-25.51%. T1 significantly increased the bacterial diversity index over the whole growth period by 45.16% compared to that in CK. The dominant soil phyla were Actinobacteria, Proteobacteria, Acidobacteria, and Chloroflexi, and the dominant genera were Bacillus and Geminicoccaceae. The most abundant functions of the bacterial community in the study area were chemoheterotrophy and aerobic chemoheterotrophy, with average relative abundances of 28.89% and 27.11%, and T3 and T6 significantly improved soil N cycling function. The results of redundancy analysis (RDA) indicated that Na+, SO42-, pH, and EC were important factors driving the structure of the bacterial community, and correlation heatmaps showed that Na+, SO42-, pH, and EC were significantly and positively correlated mainly with the phylum Planctomycetota, whereas soil OM and TN were significantly and positively correlated with Cyanobacteria. Compared with that in CK, T6 increased the relative abundance of Cyanobacteria and optimized the bacterial community structure during the whole growth period. Using recommended dosages of bacterial fertilizers T1 and T6 increased maize yield by 7.31%-24.83% and economic efficiency by 9.05%-23.23%, respectively. The preliminary results of soil chemical properties and yield correlation analysis revealed that EC, AP, HCO3-, and Mg2+ were the obstacle factors limiting soil productivity in coastal areas. In conclusion, the use of the compound bacterial agent (T1) and active microalgae (T6) at the recommended dosage can significantly enhance soil nutrients, reduce salinity, and improve the structural diversity of soil bacterial communities, which not only ensures the increase in maize yield and efficiency but also realizes the efficient use of microbial fertilizers and the improvement of soil quality.


Assuntos
Bacillus megaterium , Fertilizantes , Microbiologia do Solo , Solo , Zea mays , Zea mays/crescimento & desenvolvimento , Solo/química , Bacillus megaterium/crescimento & desenvolvimento , Bacillus megaterium/metabolismo , China , Salinidade , Biomassa , Água do Mar/microbiologia , Fósforo/análise
9.
Front Plant Sci ; 15: 1408272, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855467

RESUMO

Soil fungi play a critical role in the biogeochemical cycles of forest ecosystems. Larix gmelinii is a strong and important timber tree species, which forms close associations with a wide range of soil fungi. However, the temporal-spatial disparity effects on the assembly of soil fungal communities in L. gmelinii forests are poorly understood. To address these questions, a total of 120 samples, including 60 bulk soil and 60 root samples, were collected from Aershan and Genhe in July (summer) and October (autumn)2021. We obtained 7,788 operational taxonomic units (OTUs) after merging, filtering, and rarefying using high-throughput sequencing. The dominant phyla are Basidiomycota, Ascomycota, Mortierellomycota, and Mucoromycota. There were 13 dominant families, among which the families with average relative abundance more than 5% included Thelephoraceae, Mortierellaceae, Archaeorhizomycoaceae, and Inocybaceae. In the functional guilds, symbiotrophic fungi had a relative advantage in the identified functions, and the relative abundances of pathotrophic and saprotrophic fungi varied significantly between sites. There were 12 families differentially expressed across compartments, 10 families differentially expressed between seasons, and 69 families were differentially expressed between sites. The variation in alpha diversity in the bulk soil was greater than that in the rhizosphere soil. Among the three parts (compartment, season, and site), the site had a crucial effect on the beta diversity of the fungal community. Deterministic processes dominated fungal community assembly in Genhe, whereas stochastic processes dominated in Aershan. Soil physicochemical properties and climatic factors significantly affected fungal community structure, among which soil total nitrogen and pH had the greatest effect. This study highlights that spatial variations play a vital role in the structure and assembly of soil fungal communities in L. gmelinii forests, which is of great significance for us in maintaining the health of the forests.

10.
Cell Biochem Biophys ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849694

RESUMO

Sensorineural hearing loss (SNHL), a multifactorial progressive disorder, results from a complex interplay of genetic and environmental factors, with its underlying mechanisms remaining unclear. Several pathological factors are believed to contribute to SNHL, including genetic factors, ion homeostasis, cell apoptosis, immune inflammatory responses, oxidative stress, hormones, metabolic syndrome, human cytomegalovirus infection, mitochondrial damage, and impaired autophagy. These factors collectively interact and play significant roles in the onset and progression of SNHL. The present review offers a comprehensive overview of the various factors that contribute to SNHL, emphasizes recent developments in understanding its etiology, and explores relevant preventive and intervention measures.

11.
Biochem Genet ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877158

RESUMO

Endophytic fungi associated with plants may contain undiscovered bioactive compounds. Under standard laboratory conditions, most undiscovered compounds are inactive, whereas their production could be stimulated under different cultivation conditions. In this study, six endophytic fungi were isolated from the bark of Koelreuteria paniculata in Quancheng Park, Jinan City, Shandong Province, one of which was identified as a new subspecies of Aureobasidium pullulans, named A. pullulans KB3. Additionally, metabolomic tools were used to screen suitable media for A. pullulans KB3 fermentation, and the results showed that peptone dextrose medium (PDM) was more beneficial to culture A. pullulans KB3 for isolation of novel compounds. Sphaerolone, a polyketone compound, was initially isolated from A. pullulans KB3 via scaled up fermentation utilizing PDM. Additionally, the whole-genome DNA of A. pullulans KB3 was sequenced to facilitate compound isolation and identify the biosynthesis gene clusters (BGCs). This study reports the multi-omics (metabolome and genome) analysis of A. pullulans KB3, laying the foundation for discovering novel compounds of silent BGCs and identifying their biosynthesis pathway.

12.
Artigo em Inglês | MEDLINE | ID: mdl-38885111

RESUMO

The separation of biological particles like cells and macromolecules from liquid samples is vital in clinical medicine, supporting liquid biopsies and diagnostics. Deterministic Lateral Displacement (DLD) is prominent for sorting particles in microfluidics by size. However, the design, fabrication, and testing of DLDs are complex and time-consuming. Researchers typically rely on finite element analysis to predict particle trajectories, which are crucial in evaluating the performance of DLD. Traditional particle trajectory predictions through finite element analysis often inaccurately reflect experimental results due to manufacturing and experimental variabilities. To address this issue, we introduced a machine learning-enhanced approach, combining past experimental data and advanced modeling techniques. Our method, using a dataset of 132 experiments from 40 DLD chips and integrating finite element simulation with a microfluidic-optimized particle simulation algorithm (MOPSA) and a Random Forest model, improves trajectory prediction and critical size determination without physical tests. This enhanced accuracy in simulation across various DLD chips speeds up development. Our model, validated against three DLD chip designs, showed a high correlation between predicted and experimental particle trajectories, streamlining chip development for clinical applications.

13.
Ren Fail ; 46(1): 2338484, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38832469

RESUMO

Critically ill COVID-19 patients may exhibit various clinical symptoms of renal dysfunction including severe Acute Kidney Injury (AKI). Currently, there is a lack of bibliometric analyses on COVID-19-related AKI. The aim of this study is to provide an overview of the current research status and hot topics regarding COVID-19 AKI. The literature was retrieved from the Web of Science Core Collection (WoSCC) database. Subsequently, we utilized Microsoft Excel, VOSviewer, Citespace, and Pajek software to revealed the current research status, emerging topics, and developmental trends pertaining to COVID-19 AKI. This study encompassed a total of 1507 studies on COVID-19 AKI. The United States, China, and Italy emerged as the leading three countries in terms of publication numbers, contributing 498 (33.05%), 229 (15.20%), and 140 (9.29%) studies, respectively. The three most active and influential institutions include Huazhong University of Science and Technology, Wuhan University and Harvard Medical School. Ronco C from Italy, holds the record for the highest number of publications, with a total of 15 papers authored. Cheng YC's work from China has garnered the highest number of citations, totaling 470 citations. The co-occurrence analysis of author keywords reveals that 'mortality', 'intensive care units', 'chronic kidney disease', 'nephrology', 'renal transplantation', 'acute respiratory distress syndrome', and 'risk factors' emerge as the primary areas of focus within the realm of COVID-19 AKI. In summary, this study analyzes the research trends in the field of COVID-19 AKI, providing a reference for further exploration and research on COVID-19 AKI mechanisms and treatment.


Assuntos
Injúria Renal Aguda , Bibliometria , COVID-19 , Pandemias , SARS-CoV-2 , Humanos , COVID-19/complicações , COVID-19/epidemiologia , Injúria Renal Aguda/epidemiologia , Injúria Renal Aguda/etiologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/complicações , Pneumonia Viral/epidemiologia , Pneumonia Viral/complicações , Itália/epidemiologia , Betacoronavirus , China/epidemiologia , Saúde Global
15.
Eur J Med Res ; 29(1): 311, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38845036

RESUMO

OBJECTIVE: Our study aimed to determine whether there exists an association between low-grade systemic inflammation, as measured by serum C-reactive protein (CRP), and the risk of lower-extremity deep venous thrombosis (LEDVT) in patients with primary intracerebral hemorrhage (ICH). METHODS: This observational study was retrospectively conducted on patients with primary ICH who were presented to two tertiary medical centers between January 2021 and August 2022. The primary outcome was detecting LEDVT occurrence within 14 days from the onset of the acute ICH episode. Weighted logistic regression and restricted cubic spline models were employed to estimate the association between CRP and LEDVT following 1:1 propensity score matching (PSM). RESULTS: Of the 538 patients with primary ICH who met the inclusion criteria, 76 (14.13%) experienced LEDVT. Based on the cut-off levels of CRP measured upon admission from the receiver operating characteristic (ROC) curve, patients with primary ICH were categorized into two groups: (i) CRP < 1.59 mg/L and (ii) CRP ≥ 1.59 mg/L. After 1:1 PSM, the LEDVT events occurred in 24.6% of patients with CRP ≥ 1.59 mg/L and 4.1% of patients with CRP < 1.59 mg/L (P < 0.001). ROC curve revealed the area under the ROC curve of 0.717 [95% confidence interval (CI) 0.669-0.761, P < 0.001] for CRP to predict LEDVT with a sensitivity of 85.71% and specificity of 56.29%. After adjusting for all confounding variables, the occurrence of LEDVT in ICH patients with higher CRP levels (≥ 1.59 mg/L) was 10.8 times higher compared to those with lower CRP levels (95% CI 4.5-25.8, P < 0.001). A nonlinear association was observed between CRP and an increased risk of LEDVT in the fully adjusted model (P for overall < 0.001, P for nonlinear = 0.001). The subgroup results indicated a consistent positive link between CRP and LEDVT events following primary ICH. CONCLUSIONS: Higher initial CRP levels (CRP as a dichotomized variable) in patients with primary ICH are significantly associated with an increased risk of LEDVT and may help identify high-risk patients with LEDVT. Clinicians should be vigilant to enable early and effective intervention in patients at high risk of LEDVT.


Assuntos
Proteína C-Reativa , Hemorragia Cerebral , Extremidade Inferior , Trombose Venosa , Humanos , Proteína C-Reativa/metabolismo , Proteína C-Reativa/análise , Masculino , Feminino , Trombose Venosa/sangue , Trombose Venosa/etiologia , Hemorragia Cerebral/sangue , Hemorragia Cerebral/etiologia , Pessoa de Meia-Idade , Extremidade Inferior/irrigação sanguínea , Estudos Retrospectivos , Idoso , Biomarcadores/sangue , Curva ROC , Fatores de Risco
16.
Materials (Basel) ; 17(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38893734

RESUMO

Triboelectric nanogenerators (TENGs) have emerged as viable micro power sources for an array of applications. Since their inception in 2012, TENGs have been the subject of significant advancements in terms of structural design and the development of friction materials. Despite these advancements, the complexity of their structural designs and the use of costly friction materials hinder their practical application. This study introduces a simplified TENG model utilizing an economical composite film of fullerene carbon soot (FS)-doped polydimethylsiloxane (PDMS) (FS-TENG). It confirms the FS-TENG's ability to convert mechanical energy into electrical energy, as demonstrated through experimental validation. The generated electricity by the FS-TENG can power devices such as light-emitting diodes (LEDs), digital watches, kitchen timers, and sports stopwatches, highlighting its efficiency. This research enhances the development of TENGs featuring low-cost, streamlined structures for sustainable and autonomous energy sensing applications.

17.
Anal Methods ; 16(24): 3839-3846, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38829181

RESUMO

The level of sulfur dioxide (SO2) and viscosity in mitochondria play vital roles in various physiological and pathological processes. Abnormalities in mitochondrial SO2 and viscosity are closely associated with numerous biological diseases. It is of great significance to develop novel fluorescence probes for simultaneous detection of SO2 and viscosity within mitochondria. Herein, we have developed a water-soluble, mitochondrial-targeted and near-infrared fluorescent probe, CMBT, for the simultaneous detection of SO2 and viscosity. The probe CMBT incorporates benzothiazolium salt as a mitochondrial targeting moiety and 7-diethylaminocoumarin as a rotor for viscosity detection, respectively. Based on the prompt reaction between nucleophilic HSO3-/SO32- and the backbone of the benzothiazolium salt derivative, probe CMBT displayed high sensitivity and selectivity toward SO2 with a limit of detection as low as 0.17 µM. As viscosity increased, the twisted intramolecular charge transfer (TICT) process was restricted, resulting in fluorescence emission enhancement at 690 nm. Moreover, probe CMBT demonstrated exceptional mitochondrial targeting ability and was successfully employed to image variations of SO2 and viscosity in living cells and mice. The work highlights the great potential of the probe as a convenient tool for revealing the relationship between SO2 and viscosity in biological systems.


Assuntos
Corantes Fluorescentes , Mitocôndrias , Dióxido de Enxofre , Dióxido de Enxofre/análise , Dióxido de Enxofre/química , Corantes Fluorescentes/química , Animais , Mitocôndrias/química , Mitocôndrias/metabolismo , Viscosidade , Camundongos , Humanos , Imagem Óptica/métodos , Células HeLa , Limite de Detecção
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124618, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38925039

RESUMO

This study developed a rapid, accurate, objective and economic method to identify and evaluate the quality of Alismatis Rhizoma (AR) commodities. Traditionally, the identification of plant species and geographical origins of AR commodities mainly relied on experienced staff. However, the subjectivity and inaccuracy of human identification negatively impacted the trade of AR. Besides, liquid chromatographic methods such as ultra-high-performance liquid chromatography (UPLC) and high-performance liquid chromatography (HPLC), the major approach for the determination of triterpenoid contents in AR was time-consuming, expensive, and highly demanded in manoeuvre specialists. In this study, the combination of near-infrared (NIR) spectroscopy and chemometrics as the method was developed and utilised to address the two common issues of identifying the quality of AR commodities. Through the discriminant analysis (DA), the raw NIR spectroscopy data on 119 batches samples from two species and four origins in China were processed to the best pre-processed data. Subsequently, orthogonal partial least squares-discriminant analysis (OPLS-DA) and random forest (RF) as the major chemometrics were used to analyse the best pre-processed data. The accuracy rates by OPLS-DA and RF were respectively 100% and 97.2% for the two species of AR, and respectively100% and 94.4% for the four origins of AR. Meanwhile, a quantitative correction model was established to rapidly and economically predict the seven triterpenoid contents of AR through combining the partial least squares (PLS) method and NIR spectroscopy, and taking the triterpenoid contents measured by UPLC as the reference value, and carry out spectral pre-processing methods and band selection. The final quantitative model correlation coefficients of the seven triterpenoid contents of AR ranged from 0.9000 to 0.9999, indicating that prediction ability of this model had good stability and applicability.

19.
Materials (Basel) ; 17(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38930248

RESUMO

The sluggish kinetics of oxygen reduction reactions (ORRs) require considerable Pd in the cathode, hindering the widespread of alkaline fuel cells (AFCs). By alloying Pd with transition metals, the oxygen reduction reaction's catalytic properties can be substantially enhanced. Nevertheless, the utilization of Pd-transition metal alloys in fuel cells is significantly constrained by their inadequate long-term durability due to the propensity of transition metals to leach. In this study, a nonmetallic doping strategy was devised and implemented to produce a Pd catalyst doped with P that exhibited exceptional durability towards ORRs. Pd3P0.95 with an average size of 6.41 nm was synthesized by the heat-treatment phosphorization of Pd nanoparticles followed by acid etching. After P-doping, the size of the Pd nanoparticles increased from 5.37 nm to 6.41 nm, and the initial mass activity (MA) of Pd3P0.95/NC reached 0.175 A mgPd-1 at 0.9 V, slightly lower than that of Pd/C. However, after 40,000 cycles of accelerated durability testing, instead of decreasing, the MA of Pd3P0.95/NC increased by 6.3% while the MA loss of Pd/C was 38.3%. The durability was primarily ascribed to the electronic structure effect and the aggregation resistance of the Pd nanoparticles. This research also establishes a foundation for the development of Pd-based ORR catalysts and offers a direction for the future advancement of catalysts designed for practical applications in AFCs.

20.
PLoS Pathog ; 20(6): e1012355, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38935808

RESUMO

Stress granules (SGs), formed by untranslated messenger ribonucleoproteins (mRNPs) during cellular stress in eukaryotes, have been linked to flavivirus interference without clear understanding. This study reveals the role of Zika virus (ZIKV) NS2B as a scaffold protein mediating interaction between protein phosphatase 1α (PP1α) and eukaryotic initiation factor 2α (eIF2α). This interaction promotes eIF2α dephosphorylation by PP1α, inhibiting SG formation. The NS2B-PP1α complex exhibits remarkable stability, resisting ubiquitin-induced degradation and amplifying eIF2α dephosphorylation, thus promoting ZIKV replication. In contrast, the NS2BV35A mutant, interacting exclusively with eIF2α, fails to inhibit SG formation, resulting in reduced viral replication and diminished impact on brain organoid growth. These findings reveal PP1α's dual role in ZIKV infection, inducing interferon production as an antiviral factor and suppressing SG formation as a viral promoter. Moreover, we found that NS2B also serves as a versatile mechanism employed by flaviviruses to counter host antiviral defenses, primarily by broadly inhibiting SG formation. This research advances our comprehension of the complex interplay in flavivirus-host interactions, offering potential for innovative therapeutic strategies against flavivirus infections.


Assuntos
Fator de Iniciação 2 em Eucariotos , Proteína Fosfatase 1 , Grânulos de Estresse , Proteínas não Estruturais Virais , Replicação Viral , Infecção por Zika virus , Zika virus , Zika virus/fisiologia , Replicação Viral/fisiologia , Humanos , Infecção por Zika virus/virologia , Infecção por Zika virus/metabolismo , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Proteína Fosfatase 1/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Grânulos de Estresse/metabolismo , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA